REPORT

PREPARED FOR

P.O. DULIAJAN

DIST DIBRUGARH

ASSAM 786 602

INDIA

CONDUCTED & PREPARED BY

GREEN CIRCLE CONSULTANTS (I) PVT LTD.

Environmental, Health, Hygiene, Safety, Risk, & Quality Consulting Engineers & Trainers

(An ISO 9001: 2008 Certified Company)

REGD. OFFICE: 204, Chanakya, 2nd Floor, Opp. Vimalnath Complex, High Tension Road Crossing, Vadodara-390023 (Gujarat), India

<u>ALSO AT</u>

NEW DELHI	MUMBAI	PUNE	BANG	ALORE	HYDERABAD
OVERS	EAS:	AUSTRALIA	OMAN	AFRICA	

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

QUALITY CONTROL SHEET

Rev.	Date	Reason History	Prepared By	Reviewed By	Approved By
00	02/10/10	Draft Report of QRA	KP	DD	YD
01	17/12/10	Revised Draft Report of QRA	KP	DD	YD
-	31/12/10	Final Report of QRA	KP	DD	YD

KP : Kavita Patwardhan

DD : Dipali Desai

YD : Yogendra Dave

Prepared by	Kavita Patwardhan, Associate Consultant - RMS
Signature	
Reviewed by	Dipali Desai, Dy. Manager - RMS
Signature	
Approved by	Yogendra Dave, HOD & Corporate CEO
Signature	
Released by	Nachiket Joshi, Group Manager-Accounts & Finance
Signature	

QUANTITATIVE RISK ASSESSMENT

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

<u>ACKNOWLEDGEMENT</u>

WE EXPRESS OUR SINCERE THANKS TO MANAGEMENT & EMPLOYEES OF ASSAM GAG COMPANY LTD, ASSAM (INDIA) FOR THEIR CO-OPERATION & UNSTINTED HELP WITHOUT WHICH THE 'QUANTITATIVE RISK ASSESSMENT' COULD NOT HAVE BEEN POSSIBLE. THE COURTESY EXTENDED TO OUR TEAM IS HIGHLY APPRECIATED.

For: GREEN CIRCLE CONSULTANTS (I) PVT.LTD.

AUTHORISED SIGNATORY

GREEN CIRCLE CONSULTANTS (I) PVT LTD,

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

ABBREVIATION

API	American Petroleum Institute
ESD	Emergency Shutdown system
ID	Internal Diameter
ROV	Remote Operated Valve
P & ID	Piping and Instrument Diagram
PFD	Process Flow Diagram
PPM	Parts Per Million
LFL	Lower Flammable Limit
UFL	Upper Flammable Limit
AIHA	American Industrial Hygiene Association
MSDS	Material Safety Datasheet
NH	No Hazards
NR	Not Reached
CNG	Compressed Natural Gas

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 1 of 160

REPORT NO.:-GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

<u>INDEX</u>

ABBREVIATION				
EXECUTIVE SUMMARY				
INTRODUCTION:		3		
OBJECTIVE OF STUDY		3		
SCOPE OF THE STUDY		3		
USE OF QRA RESULTS		3		
SOFTWARE USED		3		
SITE CONDITION		3		
METEOROLOGICAL CONDITIONS		3		
ATMOSPHERIC PARAMETERS		3		
WIND SPEED AND WIND DIRECTION		3		
WEATHER CATEGORY		3		
METODOLOGY ADOPTED FOR CONSEC	QUENCE ANALYSIS	3		
HAZARDS OF MATERIALS		3		
FLAMMABLE HAZARDS ASSOCIATED W	ITH HYDROCARBONS	3		
DAMAGE CRITERIA		3		
CONSEQUENCE ANALYSIS		3		
EVENT OUTCOMES		3		
MODES OF FAILURE		3		
SELECTED FAILURE CASES		3		
EFFECT OF RELEASE		3		
FAILURE ASSOCIATED WITH PIPELINES		3		
MAJOR ACCIDENT EVENT SCENARIOS		3		
CONSEQUENCE RESULTS COMPRESSOR	R UNIT 1	3		
CONSEQUENCE RESULTS COMPRESSOR UNIT 3,4,5				
CONSEQUENCE RESULTS COMPRESSOR UNIT 6, 7				
CONSEQUENCE RESULTS COMPRESSOR UNIT 8,9,10,11				
CONSEQUENCE RESULTS - AGCL COM	PRESSOR STATION TO BVFCL NAMRUI	P3		
CONSEQUENCE RESULTS- AGCL COMPRESSOR STATION TO NTPS NAMRUP				
CONSEQUENCE RESULTS- AGCL COMPRESSOR STATION TO NTPS NAMRUP				
CONSEQUENCE RESULTS – AGCL TO BVFCL NAMRUP				
CONSEQUENCE RESULTS – AGCL TO NAMRUP				
CONSEQUENCE RESULTS – DILIAJNAN TO DIBRUGARH				
CONSEQUENCE RESULTS – KATHALGURI OCS OF OIL TO NEEPCO				
CONSEQUENCE RESULTS – KUSIJAN TO DOOMDOOMA				
CONSEQUENCE RESULTS – LAKWA TO GOLAGHAT				
Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01		
Controlled By:	Rev No.: 00	Page 2 of 160		

QUANTITATIVE RISK ASSESSMENT

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

CONSEQUENCE RESULTS – LAKWA TO NAMRUP
CONSEQUENCE RESULTS - LPG_SEPERATION STATION TO AGCL- DULIAJAN
CONSEQUENCE RESULTS – DULIAJAN TO AGCL COMPRESSOR AREA
CONSEQUENCE RESULTS – LPG, DULAJAN TO BVFCL NAMRUP
CONSEQUENCE RESULTS – TENGAKHAT TO TINSUKIA
CONSEQUENCE RESULTS – TENSUKIA TO DOOMDOOMA
CONSEQUENCE RESULTS – URIAMGHAT TO GOLAGHAT
CONCLUSION
GENRAL INFORMATION

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 3 of 160

QUANTITATIVE RISK ASSESSMENT

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

List of Figures

Figure 1	Compressed gas pipe work diagram	3
Figure 2	Wind rows for Dirugarh, Assam	3
Figure 3	Methodology adopted for the study	3
Figure 4	Event Tree for continuous release without rain-out (from PHAST)	3
Figure 5	Event Tree for Instantaneous release without rain-out (from PHAST)	3
Figure 6	Event Tree for continuous release with rain-out (from PHAST)	3
Figure 7	Event Tree for Instantaneous release with rain-out (from PHAST	3
Figure 8	Jet fire radiation Effect from Compressor unit in case of leakage	3
Figure 9	Overpressure damage distances in case of leakage	3
Figure 10	Fireball radiation effect in case of catastrophic rupture	3
Figure 11	Overpressure damage distance in case of catastrophic rupture	3

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 4 of 160

QUANTITATIVE RISK ASSESSMENT

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

EXECUTIVE SUMMARY

- 24 hr/day, 7 days/week monitoring of gas flow pressures.
- Plan for rapid pressure loss on the pipeline through a series of valves along the route
- Pipeline marker signs to identify the area where the pipeline is buried.
- Public awareness program to remind people to call before they dig near the pipeline
- Mobile patrol to guard against unauthorized activity.
- Leakage surveys.
- Periodic in-line inspections using sophisticated electronic equipment will check for changes in the steel pipe wall
- Security management plan, including random patrols of cell above ground facilities and the use of other modern security protocols
- Emergency Response Plan, developed with input from local and provincial
 emergency responders
- Ensure first responders have the training needed to deal with pipeline emergencies
- Always follow "Dial before dig"
- High quality steel and testing at manufacture.
- Application of fusion bond epoxy coating to protect the pipeline against corrosion.
- Cathodic protection (impressed current on the pipeline) to protect against corrosion.
- Specialized welding techniques.
- X-ray or ultrasonic testing of each weld.
- Pre-operation hydrostatic tests to verify structure integrity under extreme pressure.

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 5 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

OBJECTIVE AND SCOPE OF STUDY

Introduction:

M/s **Assam Gas Company Ltd**. has gas compressor station and the gas pipelines going to the nearby villages and tea garden Hence, a quantitative risk assessment (QRA) was under taken to assess the risk impacts associated with the compressor stations and existing pipelines existing and new installation, and to establish whether these risks comply with the applicable criteria.

Assam Gas Company Ltd., **Dibrugarh, Assam** has engaged the services of Green Circle Consultants India Pvt. Ltd, Vadodara, for carrying out QRA report. Green Circle Consultants India Pvt. Ltd has the requisite software and specialized manpower resources for this purpose. The latest version of the renowned PHAST Risk software package of DNV is used by Green Circle Consultants (I) Pvt. Ltd for carrying out the risk analysis.

QRA study for Assam Gas Company Ltd., Dibrugarh, Assam has been carried out based on data provided by Assam Gas Company Ltd., Vadodara. The study has been carried out in accordance with the International codes of practices using PHAST (Process Hazard Analysis Software Tool) – 6.53 software.

The full terms of potential hazardous scenarios and consequence events associated with the installation and operation of the proposed Gas pipelines and compressor station Unit was considered in the analysis. Based on the operations to be carried at the plant, the Risk Analysis, affected distances and the damage of property and population from the identified scenarios considering the Maximum Credible Loss Scenario (MCLS) & Worst case scenario. Maximum credible loss scenarios have been worked based on the inbuilt safety systems and protection measures to be provided for the operation of the facility & the Worst case scenario i.e. 100% catastrophic rupture have been worked out based on failure of the inbuilt safety system.

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 6 of 160

GREEN GROUP THE GREEN PEOPLE

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

We have assumed Maximum credible loss scenario (MCLS) i.e. Nozzle failure and Worst case Scenario i.e. catastrophic rupture for compressor as per the guidelines suggested by DNV – UK. Similarly, maximum inventory at the time of failure is assumed.

Objective of Study

The main objective QRA (Quantitative Risk Analysis) is to determine the potential risks of major disasters having damage potential to life and property and provide a scientific basis for decision makers to be satisfied about the safety levels of the facilities to be set up. This is achieved by the following:

- Identification of hazards
- > Identify the potential failure scenarios that could occur within the facility.
- To Asses, the potential risks associated with identified hazards to which the plant and its personal and community outside may be subjected. Consequences analysis of various hazards is carried out to determine the vulnerable zones for each probable accident scenario.
- Evaluate the process hazards emanating from the identified potential accident scenarios.
- > Analyze the damage effects to the surroundings due to such accidents.
- > Evaluate Individual risk to surroundings from the OMPL Aromatics Complex.
- Conclusion and Recommendation to mitigate measures to reduce the hazard / risks.
- > To provide guidelines for the preparation of On-site response plan.

Scope of the Study

M/s **Assam Gas Company Ltd.** has gas compressor station and the gas pipelines going to the nearby villages and tea garden Hence, a quantitative risk assessment (QRA) was under taken to assess the risk impacts associated with the compressor stations and existing pipelines existing and new installation, and to establish whether these risks comply with the applicable criteria.

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 7 of 160

GREEN GROUP THE GREEN PEOPLE

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

Use of QRA Results

The techniques used for risk prediction within the QRA have inherent uncertainties associated with them due to the necessary simplifications required. In addition, QRA incorporates a certain amount of subjective engineering judgment and the results are subject to levels of uncertainty. For this reason, the results should not be used as the sole basis for decision making and should not drive deviations from sound engineering practice. The results should be used as a tool to aid engineering judgment and, if used in this way, can provide valuable information during the decision making process.

The QRA results are dependent on the assumptions made in the calculations, which are clearly documented throughout the following sections of this report. Conservative assumptions have been used, which helps to remove the requirement for detailed analysis of the uncertainty. The results show the significant contributions to the overall risk and indicate where worthwhile gains may be achieved if further enhancement of safety is deemed necessary.

Software Used

PHAST 6.53 (latest version) has been used for consequence analysis include discharge and dispersion calculations.

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 8 of 160

GREEN GROUP THE GREEN PEOPLE

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

SITE CONDITION

Following diagram shows the location of pipeline distribution in the town

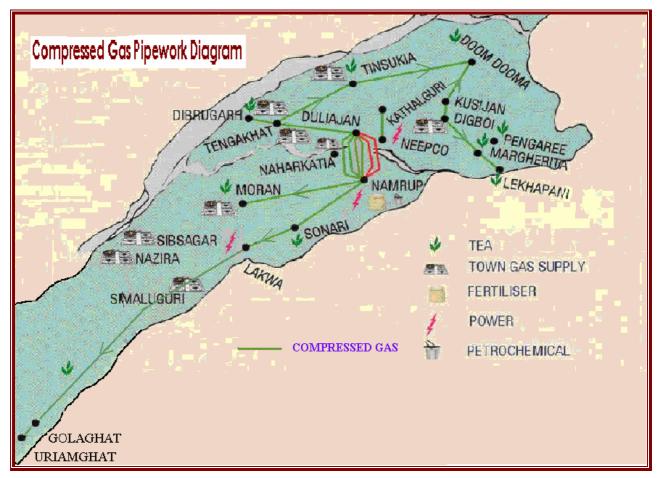


Figure 1

Compressed gas pipe work diagram

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 9 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

METEOROLOGICAL CONDITIONS

The consequences of released toxic or flammable material are largely dependent on the prevailing weather conditions. For the assessment of major scenarios involving release of toxic or flammable materials, the most important meteorological parameters are those that affect the atmospheric dispersion of the escaping material. The crucial variables are wind direction, wind speed, atmospheric stability and temperature. Rainfall does not have any direct bearing on the results of the risk analysis; however, it can have beneficial effects by absorption / washout of released materials. Actual behavior of any release would largely depend on prevailing weather condition at the time of release. For the present study we use the metrological data of the Assam

ATMOSPHERIC PARAMETERS

The Climatological data which have been used for the study is summarized below:

Table 1Atmospheric Parameters

Sr. No.	Parameter	Max	Min.	Annual Average
1.	Ambient Temperature (°C)	33	28	30
2.	Relative Humidity (%)	90	75	80

The average value of the atmospheric parameters is assumed for the study.

WIND SPEED AND WIND DIRECTION

The wind speed and wind direction data which have been used for the study is summarized below:

Wind Speed	:	7 m/s, 3 m/s & 5 m/s
Atmospheric Stability	:	D and F
Wind Direction	:	All 360 deg.
Relative Humidity	:	70%

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 10 of 160

GREEN GROUP THE GREEN PEOPLE

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

WEATHER CATEGORY

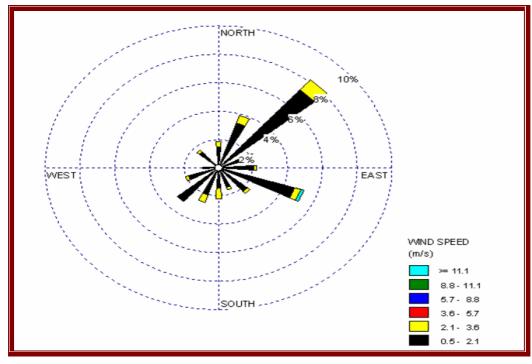
One of the most important characteristics of atmosphere is its stability. Stability of atmosphere is its tendency to resist vertical motion or to suppress existing turbulence. This tendency directly influences the ability of atmosphere to disperse pollutants emitted into it from the facilities. In most dispersion scenarios, the relevant atmospheric layer is that nearest to the ground, varying in thickness from a few meters to a few thousand meters. Turbulence induced by buoyancy forces in the atmosphere is closely related to the vertical temperature gradient.

Temperature normally decreases with increasing height in the atmosphere. The rate at which the temperature of air decreases with height is called Environmental Lapse Rate (ELR). It will vary from time to time and from place to place. The atmosphere is said to be stable, neutral or unstable according to ELR is less than, equal to or greater than Dry Adiabatic Lapse Rate (DALR), which is a constant value of 0.98°C/100 meters.

Pasquill stability parameter, based on Pasquill – Gifford categorization, is such a meteorological parameter, which describes the stability of atmosphere, i.e., the degree of convective turbulence. Pasquill has defined six stability classes ranging from `A' (extremely unstable) to `F' (moderately stable). Wind speeds, intensity of solar radiation (daytime insulation) and nighttime sky cover have been identified as prime factors defining these stability categories.

When the atmosphere is unstable and wind speeds are moderate or high or gusty, rapid dispersion of pollutants will occur. Under these conditions, pollutant concentrations in air will be moderate or low and the material will be dispersed rapidly. When the atmosphere is stable and wind speed is low, dispersion of material will be limited and pollutant concentration in air will be high. In general, worst dispersion conditions (i.e. contributing to greater hazard distances) occur during low wind speed and very stable weather conditions.

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 11 of 160


REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

	Day	y time insola	tion	Night time	condition	Anytime
Surface Wind Speed	Strong	Moderate	Slight	Thin Overcast > 4/8 low cloud	≥ 3/8 cloudiness	Heavy overcast
<2	А	A-B	В	F	F	D
2-3	A-B	В	С	E	F	D
3^	В	B-C	С	D	E	D
4-6	С	OD	D	D	D	D
>6	С	D	D	D	D	D

A: Extremely unstable conditions

- B: Moderately unstable conditions
- C: Slightly unstable conditions
- D: Neutral conditions
- E: Slighrly stable conditions
- F: Moderately stable conditions

Windrow for Dibrugarh, Assam is given below.

Wind rows for Dirugarh, Assam

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 12 of 160

QUANTITATIVE RISK ASSESSMENT

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

METODOLOGY ADOPTED FOR CONSEQUENCE ANALYSIS

Consequences of loss of containment can lead to hazardous situation in any industry handling potentially hazardous materials. Following factors govern the severity of consequence of the loss of containment.

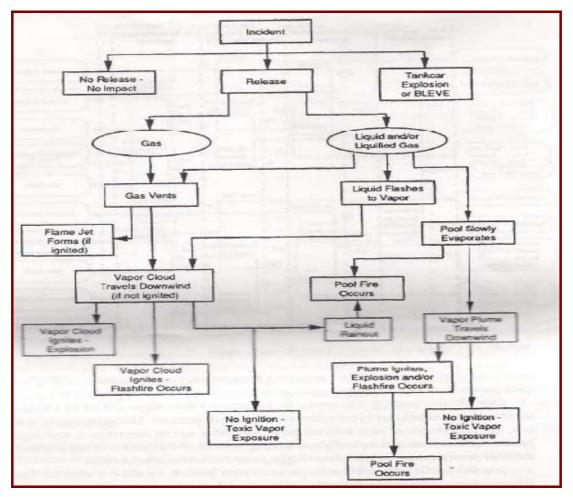
- > Intrinsic properties; flammability, instability and toxicity.
- > Dispersive energy; pressure, temperature and state of matter.
- Quantity present
- > Environmental factors; topography and weather.

Consequence analysis and calculations are effectively performed by computer software using models validated over a number of applications. Consequence modeling is carried out by PHAST (version 6.53) of DNV Software, UK.

PHAST uses the Unified Dispersion Model (UDM) capable of describing a wide range of types of accidental releases. The Model uses a particularly flexible form, allowing for sharp-edged profiles, which become more diffuse downwind.

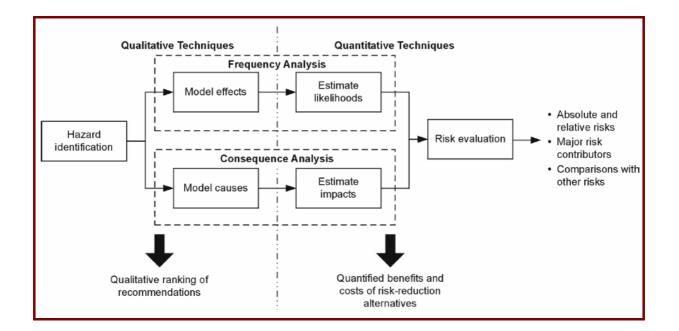
PHAST contains data for a large number of chemicals and allows definition of mixtures of any of these chemicals in the required proportion. The calculations by PHAST involve following steps for each modeled failure case:

- Run discharge calculations based on physical conditions and leak size.
- Model first stage of release (for each weather category).
- > Determine vapor release rate by flashing of liquid and pool evaporation rate.
- > Dispersion modeling taking into account weather conditions.
- In case of flammable release, calculate size of effect zone for fire and explosion.
- > The hazardous materials considered in this study are mostly flammable liquids.


Flow chart for consequence analysis is shown in the form of event tree for release of flammable liquid.

Following figure gives the brief idea of the methodology should be adopted for the study.

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 13 of 160



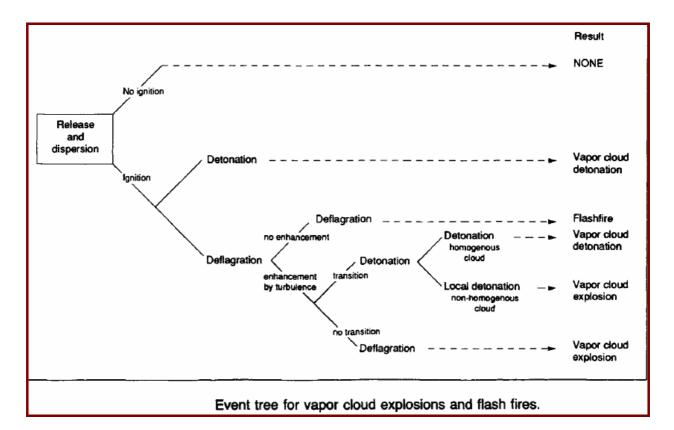
REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

Methodology adopted for the study

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 14 of 160

QUANTITATIVE RISK ASSESSMENT

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01


HAZARDS OF MATERIALS

DEFINITIONS

The release of flammable gas or liquid can lead to different types of fire or explosion scenarios. These depend on the material released, mechanism of release, temperature and pressure of the material and the point of ignition. Types of flammable effects are as follows.

a. Flash fire:

It occurs when a vapor cloud of flammable material burns. The cloud is typically ignited on the edge and burns towards the release point. The duration of flash fire is very short (seconds), but it may continue as jet fire if the release continues. The overpressures generated by the combustion are not considered significant in terms of damage potential to persons, equipment or structures. The major hazard from flash fire is direct flame impingement. Typically, the burn zone is defined as the area the vapor cloud covers out to half of the LFL. This definition provides a conservative estimate, allowing for fluctuations in modeling. Even where the concentration may be above the UFL, turbulent induced combustion mixes the material with air and results in flash fire.

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 15 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

b. Jet Fire:

Jet flames are characterized as high-pressure release of gas from limited openings (e.g. due to small leak in a vessel or broken drain valve). Boiling liquid expanding vapor explosion (BLEVE) or fireball: A fireball is an intense spherical fire resulting from a sudden release of pressurized liquid or gas that is immediately ignited. The best known cause of a fireball is a boiling liquid expanding vapor explosion (BLEVE). Fireball duration is typically 5 – 20 seconds.

c. Vapor cloud explosion

When a large quantity of flammable vapor or gas is released, mixes with air to produce sufficient mass in the flammable range and is ignited, the result is a vapor cloud explosion (VCE). Without sufficient air mixing, a diffusion-controlled fireball may result without significant overpressures developing. The speed of flame propagation must accelerate as the vapor cloud burns. Without this acceleration, only a flash fire will result.

d. **BLEVE and Fireball**

BLEVE is defined as any sudden loss of containment of a fluid above its normal boiling point at the moment of vessel failure. A common cause of this type of event is fire engulfment of a vessel which contains liquid under pressure, where the heating both raises the pressure in the vessels and lowers the yield strength of the material.

The BLEVE event can give rise to a blast wave, to fragment projection and if a flammable fluid is involved, to either a fireball, a flash fire or a vapor cloud explosion. Fireballs modeled in the QRA are outcomes of BLEVE and not independent events.

e. IMPACT

Estimation of damage or impact caused due to thermal radiation or toxic effects is generally based on the published literature on the subject. Probit relations are used for these calculations. The actual potential consequences from these likely impacts can then be visualized by superimposing the damage effect zones on the proposed site plan and identifying the elements within the project site as well as in the neighboring environment, which might be adversely affected, should one or more hazards materialize in practice.

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 16 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

f. Thermal Damage

The effect of thermal radiation on people is mainly a function of intensity of radiation (heat flux) and exposure time. The effect is expressed in terms of the probability of death and different degrees of burn.

g. Threshold Limit Value (TLV)

TLV is the permitted level of exposure for a given period on a weighted average basis (usually 8 hours for 5 days in a week).

h. Risk

A measure of both the incident likelihood (frequency) and the magnitude of the damage consequence to human life and property resulting from a given activity.

i. Accident (sequence)

A specific combination of events or circumstances that leads to an undesirable consequence

j. Hazard

A chemical or physical condition that has the potential for causing damage to people, property, or the environment

k. Event tree (analysis)

A logic model that graphically portrays the range of outcomes from the combinations of events and circumstances in an accident sequence. For example, a flammable vapor release may result in a fire, an explosion, or in no consequence depending on meteorological conditions, the degree of confinement, the presence of ignition sources, etc. These trees are often shown with the probability of each outcome at each branch of the pathway

I. Risk analysis

The development of a quantitative estimate of risk based on engineering evaluation and mathematical techniques for combining estimates of incident consequences and frequencies

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 17 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

THE GREEN PEOP

Methane

Methane is a chemical compound with the chemical formula CH4. It is the simplest alkane, and the principal component of natural gas. Burning methane in the presence of oxygen produces carbon dioxide and water. The relative abundance of methane makes it an attractive fuel. However, because it is a gas at normal temperature and pressure, methane is difficult to transport from its source. In its natural gas form, it is generally transported in bulk by pipeline or LNG carriers; few countries transport it by truck.

Potential health effects of methane

Methane is not toxic; however, it is highly flammable and may form explosive mixtures with air. Methane is violently reactive with oxidizers, halogens, and some halogen-containing compounds. Methane is also an asphyxiant and may displace oxygen in an enclosed space. Asphyxia may result if the oxygen concentration is reduced to below 19.5% by displacement the concentrations at which flammable or explosive mixtures form are much lower than the concentration at which asphyxiation risk is significant. When structures are built on or near landfills, methane off-gas can penetrate the buildings' interiors and expose occupants to significant levels of methane. Some buildings have specially engineered recovery systems below their basements to actively capture such fugitive off-gas and vent it away from the building.

Uses

Controlled By:

Methane in the form of compressed natural gas is used as a vehicle fuel, and is claimed to be more environmentally friendly than other fossil fuels such as gasoline/petrol and diesel. Research into adsorption methods of methane storage for this purpose has been conducted.

SI. No.	Properties	Values
1.	LFL (%v/v)	5
2.	UFL (%v/v)	15
3.	Auto ignition temperature (°C)	580 °C
Approve	d By: Doc. No.: AGCL/	QRA/04 Issue No.: 01

Page 18 of 160

Rev No.: 00

Table 2Hazardous properties of methane

QUANTITATIVE RISK ASSESSMENT

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

5.	Normal Boiling point (°C)	-161.6 ºC
6.	Flash point	-188 ºC

Methane (CH4) is a major greenhouse gas. It is produced during anaerobic decomposition of manure and accumulates around manure storage areas

Methane emissions from manure depend on the way manure is managed (liquid manure systems produce more methane than solid manure systems) and environmental factors such as temperature and moisture (warmer temperatures and moist conditions will produce greater amounts of methane).

Methane Characteristics

Methane is an odorless gas and is lighter than air. Because methane is lighter than air, it tends to rise and accumulate near the higher, stagnant parts of enclosed buildings and tightly closed manure storage pits. It is most likely to accumulate during hot, humid weather.

Methane is extremely difficult to detect without gas detection instruments. Concentrations in confinement livestock housing are normally well below the levels that may be explosive; however, explosions attributed to methane have occurred around manure storage pits without proper vents.

Methane can displace oxygen in confined areas, resulting in an oxygen-deficient atmosphere. Methane can explode at concentrations of 50,000 ppm or more (a level of 5 per cent). Health Effects

The Occupational Safety and Health Administration (OSHA) has no permissible exposure limit for methane, but the National Institute for Occupational Safety and Health's (NIOSH) maximum recommended safe methane concentration for workers during an 8-hour period is 1,000 ppm (0.1 percent). Methane is considered an asphyxiant at extremely high concentrations and can displace oxygen in the blood (Table 1).

Methane exposure levels and effects

Exposure level (ppm)	Effect or symptom
1000	NIOSH 8-hours TLV*
50,000 to 150,000	Potentially explosive

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 19 of 160

GREEN GROUP THE GREEN PEOPLE

REPORT NO.:-GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

500,000

Asphyxiation

TLV = Threshold Limit Value

Aerating manure

Aeration allows microorganisms to break down organic material through the addition of oxygen (O₂). Aerobic decomposition of manure lowers or eliminates methane emissions, but may increase nitrous oxide emissions.

Filtration of the ventilation air

Filtering exhaust air from animal houses to remove odour-causing gases, GHGs and dust particles may provide a way to reduce methane emissions. However, more research is needed in this area. Straight

Temperature control

Cooling of indoor stored manure can lead to a reduction in emissions.

Protect Yourself and Others from Exposure

- Make sure all pits and manure storage areas are adequately and appropriately ventilated.
- Smoking should not be allowed around manure pits.
- Frequently test the levels of methane in the barn using an explosion meter.
- Do not lower fans into the manure pit because this practice could cause methane explosion
- Prohibit all open sparks or flames in areas near pits or storage facilities.
- Electric motors, fixtures and wiring near manure storage structures should be kept
 in good condition to prevent a spark from igniting they methane.
- Entry into a confined space should not be performed without a proper breathing apparatus
- Post warning signs to keep people away from dangerous confined spaces.
- Have someone outside the manure pit to call for help if needed.
- Do not try to rescue a person who has been overcome by the gas. Call for help immediately.

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 20 of 160

QUANTITATIVE RISK ASSESSMENT

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

DAMAGE CRITERIA

Damage estimates due to thermal radiations and overpressure have been arrived at by taking in to consideration the published literature on the subject. The consequences can then be visualized by the superimposing the damage effects zones on the proposed plan site and identifying the elements within the project site as well as in the neighboring environment, which might be adversely affected, should one or more hazards materialize in real life.

Thermal damage

The effect of thermal radiation on people is mainly a function of intensity of radiation and exposure time. The effect is expressed in terms of the probability of death and different degrees of burn. The following tables give the effect of various levels of heat flux.

RADIATION kW/m2	DAMAGE TO EQUIPEMENT	DAMAGE TO PEOPLE
1.2	***	Solar heat at noon
1.6	***	Minimum level of pain threshold
2.0	PVC insulated cables damaged	
		Causes pain if duration is longer
4.0	***	than 20 sec. But blistering is
4.0		unlikely.
		Pain threshold reached after 8
	***	sec.
6.4		Second degree burns after 20
		sec.
Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 21 of 160

DAMAGE DUE TO RADIATION INTENSITY

Table 3 Damage Due to Radiation Intensity

QUANTITATIVE RISK ASSESSMENT

REPORT NO.:-GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

RADIATION kW/m2	DAMAGE TO EQUIPEMENT	DAMAGE TO PEOPLE
12.5	Minimum energy to ignite wood with a flame; Melts plastic tubing.	1% lethality in one minute. First degree burns in 10 sec.
16.0	***	Severe burns after 5 sec.
25.0	Minimum energy to ignite wood at identifying long exposure without a flame.	100% lethality in 1 minute. Significant injury in 10 secs.
37.5	Severe damage to plant	100% lethality in 1 minute. 50% lethality in 20 secs. 1% lethality in 10 secs.

FATAL RADIATION EXPOSURE LEVELS

Table 4 Fetal radiation Exposure Level

RADIATION LEVEL	PIATION LEVEL FATALITY		
kW/m2	1%	50%	99%
		EXPOSURE IN SECO	NDS
4.0	150	370	930
12.5	30	80	200
37.5	8	20	50

OVERPRESSURE DAMAGE:

Table 5 Overpressure Damage Criteria

OVER PRESSURE (mbar)	MECHANICAL DAMAGE TO EQUIPMENTS	DAMAGE TO PEC	OPLE
300	Heavy damage to plant & structure	1% death from lung o >50% eardrum dan >50% serious wound	mage
Approved By: Controlled By:	Doc. No.: AGCL/QRA/04 Rev No.: 00	Issue No.: 01 Page 22 of 160	

ASSAM GAS COMPANY LTD (A COTT OF ASSAM UBERTICAL)

QUANTITATIVE RISK ASSESSMENT

REPORT NO.:-GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

OVER PRESSURE (mbar)	MECHANICAL DAMAGE TO EQUIPMENTS	DAMAGE TO PEOPLE
		flying objects
		>1% eardrum damage
100	Repairable damage	>1% serious wounds from flying
		objects
30	Major glass damage	Slight injury from flying glass
10	10% glass damage	***

OVERPRESSURE DAMAGE :-(In Detail)

Table 6Overpressure Damage

OVER PRESSURE		MECHANICAL DAMAGE TO EQUIPMENTS	
Bar	kPa		
0.0014	0.14	Annoying noise (137 dB if of low frequency 10–15 Hz)	
0.0021	0.21	Occasional breaking of large glass windows already under strain	
0.0028	0.28	Loud noise (143 dB), sonic boom, glass failure	
0.0069	0.69	Breakage of small windows under strain	
0.0103	1.03	Typical pressure for glass breakage	
0.0207	2.07	Safe distance" (probability 0.95 of no serious damage below this value);projectile limit; some damage to house ceilings; 10% window	
0.0207	2.07	glass broken	
0.0276	2.76	Limited minor structural damage	
0.03-0.069	3.4-6.9	Large and small windows usually shattered; occasional damage to window frames	
0.048	4.8	Minor damage to house structures	
0.069	6.9	Partial demolition of houses, made uninhabitable	
0.069- 0.138		Corrugated asbestos shattered; corrugated steel or aluminum panels, fastenings fail, followed by buckling; wood panels (standard housing)fastenings fail, panels blown in	
0.09	9.0	Steel frame of clad building slightly distorted	

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 23 of 160

QUANTITATIVE RISK ASSESSMENT

REPORT NO.:-GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

OVER PRESSURE		MECHANICAL DAMAGE TO EQUIPMENTS	
Bar	kPa		
0.138	13.8	Partial collapse of walls and roofs of houses	
0.138-	13.8—	Concrete or cinder block walls, not reinforced, shattered	
0.207	20.7	Concrete of cinder block wais, notreinforced, shattered	
0.158	15.8	Lower limit of serious structural damage	
0.172	17.2	50% destruction of brickwork of houses	
0.207	20.7	Heavy machines (3000 lb) in industrial building suffered little damage; steel frame building distorted and pulled away from foundations.	
0.207-	20.7—	Frameless, self-framing steel panel building demolished; rupture of oil	
0.276	27.6	storage tanks	
0.276	27.6	Cladding of light industrial buildings ruptured,	
0.345	34.5	Wooden utility poles snapped; tall hydraulic press (40,000 lb) in building	
0.010	01.0	slightly damaged	
0.345-	34.5—	Nearly complete destruction of houses	
0.482	48.2		
0.482	48.2	Loaded, lighter weight (British) train wagons overturned	
0.482-	48.2—	Brick panels, 8–12 in. thick, not reinforced, fail by shearing or flexure	
0.551	55.1	blick pariels, 6–12 m. thick, not reinforced, fail by shearing of hexdre	
0.62	62.0	Loaded train boxcars completely demolished	
		Probable total destruction of buildings; heavy machine tools (7,000 lb)	
0.689	68.9	moved and badly damaged, very heavy machine tools (12,000 lb)	
		survive	
20.68	2068	Limit of crater lip	

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 24 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

CONSEQUENCE ANALYSIS

INTRODUCTION

This section discusses the results of the consequence analysis of identified potential accident scenarios that may occur at the Compressor Unit at Assam Gas Company Ltd., Assam. The consequence analysis is carried out to determine the extent of spread (dispersion) by accidental release which may lead to jet fire, vapor explosion resulting into generating heat radiation, overpressures, explosions etc.

In order to form an opinion on potentially serious hazardous situations and their consequences, consequence analysis of potential failure scenarios is conducted. It is qualitative analysis of hazards due to various failure scenarios. In consequence analysis, each failure case is considered in isolation and damage effects predicted, without taking into the account of the secondary events or failures it may cause, leading to a major disastrous situation. The results of consequence analysis are useful in developing disaster management plan and in developing a sense of awareness among operating and maintenance personnel. It also gives the operating personnel and population living in its vicinity, an understanding of the hazard they are posed to.

Event Outcomes

Upon release of flammable / toxic gas & liquids, the hazards could lead to various events which are governed by the type of release, release phase, ignition etc. PHAST has an inbuilt event tree for determining the outcomes which are based on two types of releases namely continuous and instantaneous. Leaks are considered to be continuous releases whereas, ruptures are considered to be instantaneous releases. These types of releases are further classified into those which have a potential for rain-out and those which do not. Whether the release would leak to a rain-out or not depends upon droplet modeling which is the main cause of formation of pools. Fig 3, fig 4, fig 5, fig 6 presents the event trees utilized by PHAST to generate the event outcomes.

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 25 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

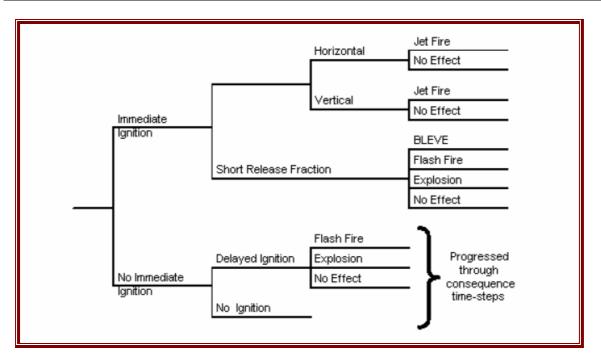


Figure 4

Event Tree for continuous release without rain-out (from PHAST)

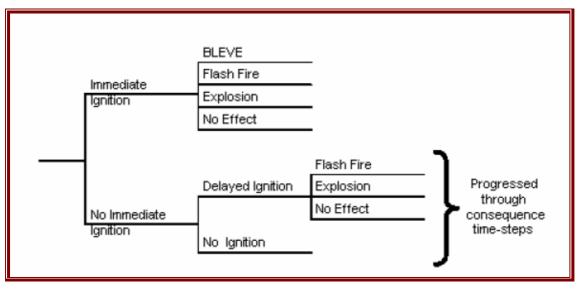
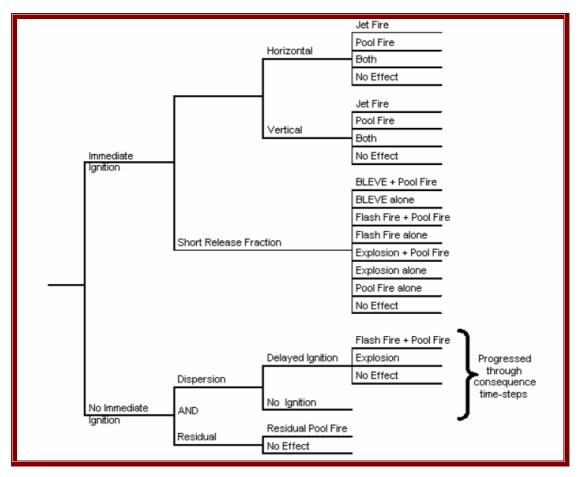
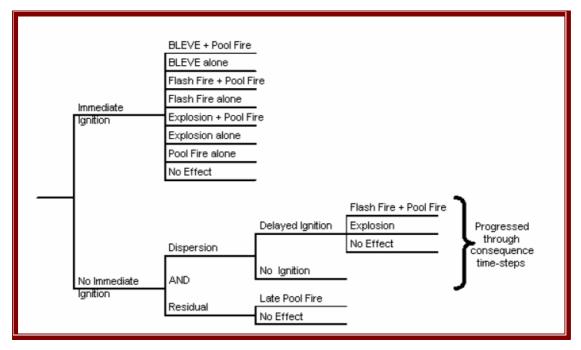


Figure 5


Event Tree for Instantaneous release without rain-out (from PHAST)

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 26 of 160



REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

Event Tree for continuous release with rain-out (from PHAST)

Event Tree for Instantaneous release with rain-out (from PHAST

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 27 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

MODES OF FAILURE

There are various potential causes and sources of leakage. This may be by way of failures of equipment or piping, due to pump seal failure, instrument tubing giving way, failure of the pipes, failure of process vessels etc. Following Table represents general mechanism for loss of containment for Piping and fitting, instruments, and human error.

(A). PIPING AND FITTING

Ref.	LOSS OF	EXAMPLES OF POSSIBLE BASIC	REMARKS
No.	OCNTAINMENT	CAUSE	
A.1	Flange/Gasket	- Incorrect gasket installed, e.g.	Possible flame
	Leaks	incorrect material, incorrect size	impingement and
		(thickness and diameter).	localized heating of
		- Incorrect installation, e.g.	adjacent equipment.
		flange faces not cleaned, flanged	
		face damaged, incorrectly	
		tightened bolts, incorrect bolts	
		used.	
		- Flange replacement without	
		gasket.	
A.2	Pipe Overstress	- Inappropriate use of design	Pipe stresses would most
	Causing Fracture	codes.	likely cause a flange leak,
		- Error in stress analysis	unless there existed a
		calculations.	combination of errors, e.g.
		- Lack of inspection during pipe	installation of rogue
		erection, e.g. excessive cold pull.	materials and unsuitable
		- Pipe testing incorrectly carried	pipe support, or error in
		out.	stress calculation plus
		- Incorrect setting of spring	failure to pressure test.
		hangers and pipe supports and	
		sliding shoes not free to move.	
		- Pipe not hydro tested because	
		of bore size (or considered not	
Approv	1		Issue No · 01

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 28 of 160

ASSAM GAS COMPANY LTD.

QUANTITATIVE RISK ASSESSMENT

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

Ref.	LOSS OF	EXAMPLES OF POSSIBLE BASIC	REMARKS
No.	OCNTAINMENT	CAUSE	
		critical) and no secondary test	
		procedures carried out.	
		- Omission to test because	
		systems not clearly identified, or	
		error in documentation.	
		- Extreme temperature	
		differential in pipework not	
		catered for in design, i.e. cold and	
		hot streams	
A.3	Over pressurization	a) Inadequate Pressure Relief	Careful attention required
	of Pipe work	- Relief valve 'simmering' and	for handling
	Causing Fracture	hydrating, icing.	hydrocarbons with "free"
		- Incorrect setting of RV	water.
		pressure.	
		- Incorrectly sized RV.	
		- Wrongly installed RV, e.g. due	
		to transferred tag No. : or	
		installation of incorrect spring	
		material.	
		- Abuse of locking system and	Rigorous adherence to
		all RVs isolated from system	procedures is essential.
		- Excessive back pressure	
		caused by blockage of relief sub-	
		headers with sludge, ice/hydrate,	
		etc.	
			Relief capacity should
		- High pressure breakthrough	always be adequate or
		into low pressure systems, which	high integrity trip system
		have inadequate relief capacity.	installed.
		- Blockage of RVs with	Potential problem around
		debris/fines, e.g. molsieve dust, or	molsieve vessels,
	red By:		Issue No : 01

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 29 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

Ref.	LOSS OF	EXAMPLES OF POSSIBLE BASIC	REMARKS
No.	OCNTAINMENT	CAUSE	
		breakage of	absorbers, columns and
		screens/package/demister.	RVs.
		b) <u>Excessive Surge Pressure /</u>	Consider needs to handle
		<u>Hammer</u>	liquid slugs from feed line
		- Too rapid isolation or blockage	when pigging
		of liquid full lines, i.e., operator	recommended.
		closing isolation valve.	Particular care required at
			pig traps and at inlet
		- Rapid blockage of liquid lines,	PCVs/bypass.
		e.g. NRV failure.	
		- Lines not or inadequately	No remote depressurizing
		designed for two phase/slug flow.	system available; requires
		- Too rapid opening of valves	review.
		and letdown of liquid under high	Potential for catastrophic
		differential pressure.	rupture of equipment,
		- Rapid vaporization of cold	fragmentation and fireball
		liquid in contact with hot fluid.	effects.
		(Rapid phase transition).	
		c) <u>Rupture Under Fire Conditions</u>	
		- Direct fire impingement	
		without any cooling (internal or	
		external) or failure to effectively	
		depressure equipment.	

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 30 of 160

Controlled By:

QUANTITATIVE RISK ASSESSMENT

REPORT NO.:-GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

Ref.	LOSS OF	EXAMPLES OF POSSIBLE BASIC	REMARKS
No.	OCNTAINMENT	CAUSE	
A-4	Failure of piping	- Failure due to acoustic fatigue	Vulnerable areas are
	due to fatigue or	arising from:-	piping downstream of
	vibration.	e.g. failure to recognized problem	PCVs and RVs operating
		exists in particular areas, failure to	at very high pressures.
		take adequate precautions	Particularly susceptible is
		(selection of incorrect valve at	small bore pipework
		design stage or during	associated with pressure
		maintenance, inadequate line	letdown and two phase
		support). Improper	flow systems and
		testing/inspection when in service,	compressors/ pumps.
		failure to report abnormally high	
		noise levels (during normal and	Regeneration gas
		upset conditions).	pipework and
		- Failure due to mechanical	connections to mol sieve
		vibration arising from:	vessels merit particular
		e.g. failure to recognized	attention.
		problem, inadequate support,	
		failure to report and minor	
		excessive vibrations (under all	
		plant conditions), maintenance	
		error, (failure to correctly align	
		rotating equipment and test for	
		vibration prior to reinstatement?	
		- Failure due to pressure or	
		thermal cycling.	
A.5	Failure of piping	- Incorrect materials selection,	Strict system for
	Due to installation	e.g. at design stage, from	supervision, inspection
	of Wrong Materials	supplier or site stores.	and verification of
			materials required during
		- Incorrect material installed,	all modifications.
Approved By: Doc. No.: AGCL/QRA/04 Issue No.: 01			
vpprov	ea By:	Doc. No.: AGCL/QRA/04	Issue No.: 01

Rev No.: 00

Page 31 of 160

ASSAM GAS COMPANY LTD.

QUANTITATIVE RISK ASSESSMENT

REPORT NO.:-GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

Ref.	LOSS OF	EXAMPLES OF POSSIBLE BASIC	REMARKS
No.	OCNTAINMENT	CAUSE	
		e.g. improper supervision and identification of materials after withdrawal from stores.	
		-	
A.6	Failure of Piping Due to low Temperature Brittle fracture	 Rogue material used in construction, wrong material specified, or uncertainties in material specification. Error in calculating minimum lower design temperatures. Systems not designed for low temperature, (e.g. on emergency depressuring) and immediate repressurising. 	A number of systems have been identified as bring vulnerable, particularly where condensate at high pressure may be depressurized.
A.7	Failure of Piping (or	- Impact from equipment being	Historically, failure of HP
	nozzles) Due to External Forces or Impact.	 moved during maintenance. Impact of heavy lifting gear, e.g. cranes. Impact from site transport, e.g. construction traffic, fire tender. 	process piping due to mechanical impact is confined mainly to small bore piping.
		 Impact on reinforced nozzle causing fractures elsewhere, e.g. valve, pump casing vessel. Impact of Third party damage due to digging 	Strict control over site construction will of course be necessary. Any incident of impact on pipework during construction must be reported and damage investigated.

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 32 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

(B) HUMAN ERROR

Ref.	LOSS OF	EXAMPLES OF POSSIBLE BASIC	REMARKS
No.	OCNTAINMENT	CAUSE	
LOSS C	DF CONTAINMENT THROU	GH HUMAN ERROR HAS BEEN ASSU	MED IMPLICITLY IN
<u>SE</u>	ECTIONS A TO F HOWEVE	R EXAMPLES OR SOME TYPICAL OP	ERATING AND
	MAINTENAN	CE ERRORS ARE INCLUDED BELOW:-	
B.1	Operational Error	- Failure or inability to close	
		instrument or sample valves.	
		- Failure or inability to close	
		drain and vent valves.	
		- Leaving safety trips/systems	
		out of commission after testing or	
		inspecting.	
		- Intentionally defeating trip	
		systems for reasons of	
		production.	
B.2	Error in De-	- Inadvertent or unauthorized	
	commissioning	opening of a pressurized system,	
		e.g. filters, vessels.	
		- Improver depressurizing and	
		purging of a system prior to	
		isolation or spading.	
		- Failure to effectively isolate	
		all process (and utility) and	
		electrical connections.	
B.3	Error in Maintenance	- Failure to maintain effective	
		isolation.	
		- Failure to report damage to	
		equipment during repair or	
		modification.	
		- Maintenance activities	
		extended to systems, which are	
Approved	d By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlle	d By:	Rev No.: 00	Page 33 of 160

ASSAM GAS COMPANY LTD ASSAM GAS COMPANY LTD.

QUANTITATIVE RISK ASSESSMENT

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

Ref.	LOSS OF	EXAMPLES OF POSSIBLE BASIC	REMARKS
No.	OCNTAINMENT	CAUSE	
		`live'.	
		- Improper supervision of	
		contract maintenance staff,	
		improper maintenance.	
B.4	Error in Re-	- Failure to close vents/drains,	SOP, Safety audit
	commissioning	replace plugs.	
		- Improper or lack or purging	
		of equipment e.g. sphere	
		receiver furnaces.	
B.5	Supervision Error	- Design error for modifications.	
		- Lack of supervision and	
		control e.g. Authorization of	
		permits isolation.	
		- Failure to regularly	
		test/inspect e.g. trip/alarm	
		system, safety equipment.	
		- Allure to regularly monitor	
		e.g. noise vibration corrosion	
		stream composition	

SELECTED FAILURE CASES

Selection is normally subjective on following parameters:

- Properties of material namely Toxic or Flammable.
- The likely severity of consequence in the event of accidental release based on inventory, operated pressure & operated temperature.
- The probability of failure of various equipments such as valves, flanges, pipe, pressure vessels etc. used in the plant.

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 34 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

The scenarios are considered to be confined to those equipment failures which involve the leakage of flammable or toxic products, of which the frequency of occurrence and the severity of the consequences have been taken into consideration and which may have a low probability of early detection.

Taking this factor into consideration, a list of selected failure cases was prepared based on process knowledge, inventory, engineering judgment, and experience, past incidents associated with such facilities and considering the general mechanisms for loss of containment. Cases have been identified for the consequence analysis.

Consequence analysis and calculations are effectively performed by computer software using models validated over a number of applications. Consequence modeling is carried out by PHAST (version 6.53) of DNV Software, UK.

PHAST uses the Unified Dispersion Model (UDM) capable of describing a wide range of types of accidental releases. The Model uses a particularly flexible form, allowing for sharpedged profiles, which become more diffuse downwind.

PHAST contains data for a large number of chemicals and allows definition of mixtures of any of these chemicals in the required proportion. The calculations by PHAST involve following steps for each modeled failure case:

EFFECT OF RELEASE

When hazardous material is released to atmosphere due to any reason, a vapor cloud is formed. Direct cloud formation occurs when a gaseous or flashing liquid escapes to the atmosphere. Release of hydrocarbons and toxic compounds to atmosphere may usually lead to the following:

1) Dispersion of hydrocarbon vapor with wind till it reaches its lower flammability limit (LFL) or finds a source of ignition before reaching LFL, which will result in a flash fire or explosion.

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 35 of 160

ASSAM GAS COMPANY LTD.

QUANTITATIVE RISK ASSESSMENT

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

- 2) Lighter hydrocarbon vapor (e.g. Natural Gas) or Hydrogen disperses rapidly in the downwind direction, being lighter than air. But comparatively heavier hydrocarbon vapor cloud like that of LPG, Propylene or Ammonia will travel downwind along the ground. If it encounters an ignition source before it is dispersed below the LFL, explosion of an unconfined vapor cloud will generate blast waves of different intensities.
- 3) A fireball or BLEVE (Boiling Liquid expanding Vapor Explosion) occurs when a vessel containing a highly volatile liquid (e.g. LPG, Propylene etc) fails and the released large mass of vapor cloud gets ignited immediately. It has damage potential due to high intensity of radiation and generation of the overpressure waves, causing large-scale damage to nearby equipment and structures.
- 4) Catastrophic failure of tanks/ pressurized vessels, rotary equipment and valves etc. can result in equipment fragments flying and hitting other equipment of the plant.
- 5) Release of toxic compounds results in the toxic vapour cloud traveling over long distances, affecting a large area, before it gets sufficiently diluted to harmless concentration in the atmosphere.
- 6) The material is in two phases inside the containment liquid & vapor. Depending on the location of the leak liquid or vapor will be released from the containment. If vapor is released a vapor cloud will form by the mixing of the vapor and air. The size of the vapor cloud will depend on the rate of release, wind speed; wind direction & atmospheric stability will determine the dispersion and movement of the vapor cloud.
- 7) If liquid is released there will be some flashing as the boiling point of liquid is below the ambient temperature. The vapor formed by immediate flashing will behave as vapors release. The liquid will fall on the ground forming a pool. There will be vaporization from the pool due to the heat gained from the atmosphere & ground. There will be dispersion and movement of vapor cloud formed by evaporation of liquid.

The behavior of material released by loss of containment depends on the following factors:

- Physical properties of the material
- Conditions of material in containment (pressure and temperature)
- Phase of material released (liquid or gas)
- Inventory of material released
- Weather parameters (temperature, humidity, wind speed, atmospheric stability)
- Material with boiling point below ambient condition.

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 36 of 160

REPORT NO.:-GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

Statistical reports of consequence analysis are summarized below. table.7

Similarly pictorial presentations of consequence results are shown below the tabular report.

Failure associated with Pipelines

Pipelines laid under soil usually do not undergo major failures due to various threats. Above ground sections of the pipeline such as sectionalizing valve sections, valve pits, road crossings, etc are considered for the failures. Some of the main causes of loss of containment from pipelines are due to corrosion, operation beyond design conditions, third party impacts such as excavation etc.

Failure of Export pipeline is expected to take place due to the below mentioned causes.

DESCRIPTION:	Export Pipelines
Scenario	Causes
	External Impact (anchoring)
	Subsequent leakage due to corrosion. and erosion
Loss of containment	High pressure in pipeline due to blockage / high loading
from Pipeline	rate / communication failure with VSD
	Surge due to closure of downstream ESD
	FCV Malfunction / fails in open position
Loss of containment	High pressure from source
from Hose	Surge due to closure of downstream valve

Table 7Failure of pipelines

The natural gas get into air due to leak / rupture of the pipeline would result into an environmental pollution. From analysis of various accidents in the gas compressor pipelines, it has been observed that gas leaking from a pipeline is associated with hazards. Of methane may develop into fire/explosion at the surface due to presence of some ignition source.

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 37 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

Major Accident Event Scenarios

Based on the sections identified for each unit, various failure scenarios were introduced into the model. These scenarios were based on various leaks sizes described below.

Table 8 Leak Size categories

Hole size range (mm)	Category	Nominal size considered for model
D <=5 mm	Small	5 mm
25mm >= D > 5 mm	Medium	25 mm
100mm >= D > 25mm	Large	100 mm
D > 150mm	Rupture	Rupture

PHAST software was used to model each of these scenarios to arrive at consequence results.

Source Data

CNG Composition is as follows :

Sr. No.	Material	State	% (v/v)
1	Methane	Gas	92.46
2	Ethane	Gas	4.39
3	Propane	Gas	0.80
4	Butane	Gas	0.14
5	Pentane	Gas	0.08
6	Hexane	Gas	0.04
7	Carbon dioxide	Gas	1.30
8	Nitrogen	Gas	0.62

It is necessary to know the chemical composition of the liquid and/or gas, permitting the other properties to be determined. These may include the molecular weight, density, molecular diffusivity, conductivity, and boiling point. Temperature- dependent properties, such as vapor pressure, heat capacities, heat of vaporization, and surface tension may

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 38 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

also need to be determined. If there are several components in a mixture, the properties of each component must be known. There are several useful reference documents that provide summaries of properties of many chemicals (e.g., Perry et al. 1984, AIHA 1995, NFPA 1994, NOAA 1992, and Urben 1995).

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 39 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

CONSEQUENCE RESULTS COMPRESSOR UNIT 1

Maximum credible loss Scenario (MCLS): Leakage due to Flange failure or Hose Failure from outlet pipeline of compressor

		CONCENTRATION AT DISTANCE (M)					
Scenario details	Concentration in PPM		WEATHE	WEATHER CATEGORY			
	Concernia		3F	7D	5D		
5 mm leakage in	UFL	164806	0.44	0.44	0.44		
outlet pipeline of	LFL	43559.7	2.04	1.86	1.96		
compressor	LFL (frac)	21779.9	3.75	3.07	3.41		
25 mm leakage in	UFL	164806	2.36	2.31	2.35		
outlet pipeline of	LFL	43559.7	8.82	7.49	8.06		
compressor	LFL (frac)	21779.9	21.17	16.46	18.33		
100 mm leakage in	UFL	164806	9.13	8.63	8.93		
outlet pipeline of	LFL	43559.7	56.67	54.42	54.68		
compressor	LFL (frac)	21779.9	121.81	132.15	128.05		

Scenario	THERMAL DAM	MAGE DIS	TANCE BY J	ET FIRE	MAXIMUM DISTANCE AT OVERPRESSURE LEVEL (M)			SSURE
details			ATHER CATEGORY		OVERPRESSURE	WEATHER CATEGORY		
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D
5 mm	4	NR	NR	NR	0.02068	NR	NR	NR
leakage in outlet	12.5	NR	NR	NR	0.1379	NR	NR	NR
pipeline of compressor	37.5	NR	NR	NR	0.2068	NR	NR	NR
25 mm	4	19.76	19.94	19.93	0.02068	37.70	25.55	26.19
leakage in outlet	12.5	16.06	16.84	16.52	0.1379	24.58	14.03	14.19
pipeline of compressor	37.5	12.14	12.49	11.97	0.2068	23.55	13.11	13.24
Anna d Day								

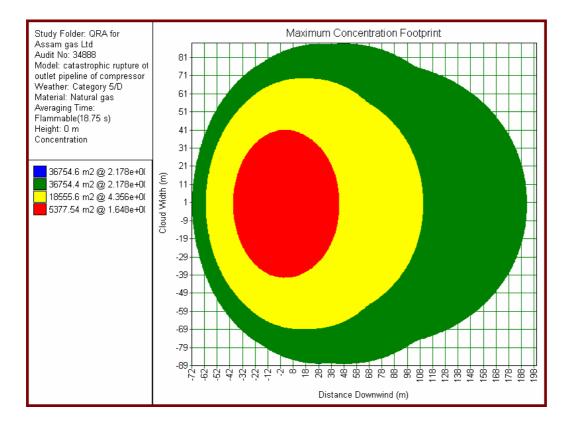
Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 40 of 160

REPORT NO.:-GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

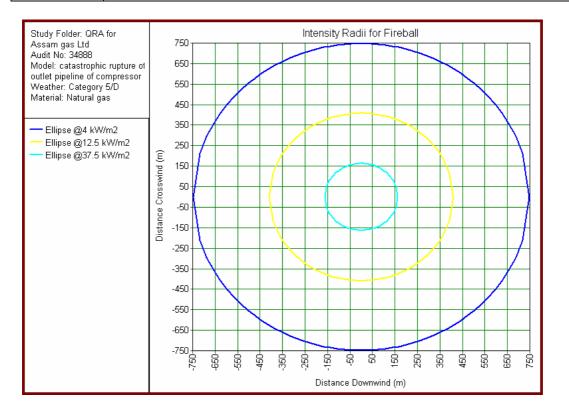
Scenario	THERMAL DA	AGE DISTANCE BY JET FIRE			MAXIMUM DISTANCE AT OVERPRESSURE LEVEL (M)			
details	RADIATION	WEAT	WEATHER CATEGORY		OVERPRESSURE	WEATHER CATEGORY		
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D
100 mm leakage in	4	80.83	80.84	80.66	0.02068	217.0	215.74	207.81
outlet	12.5	62.55	65.97	64.26	0.1379	145.12	152.2	142.74
pipeline of compressor	37.5	49.01	55.06	51.53	0.2068	139.44	147.18	137.59

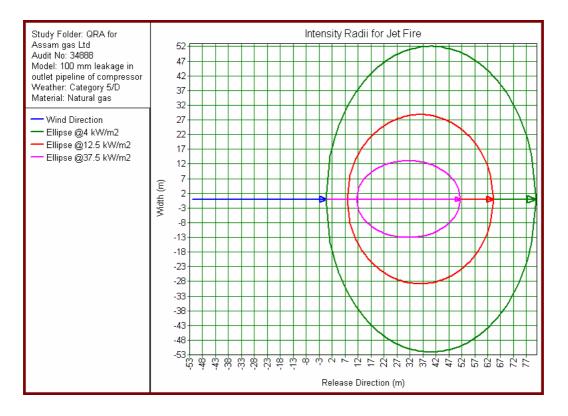
Worst Case Scenario (WCS):-100% Catastrophic Rupture

	CONCENTRATION AT DISTANCE (M)							
Scenario details	Concentra	ition in PPM	WEATHER CATEGORY					
	concernit		3F	7D	5D			
Rupture in outlet pipeline of compressor	UFL	164806	43.89	48.07	45.48			
	LFL	43559.7	92.68	125.21	99.73			
	LFL (frac)	21779.9	166.42	226.20	161.55			

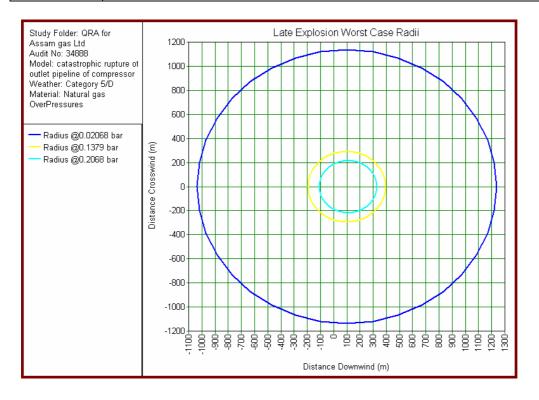

Scenario	THERMAL DAMAGE DISTANCE BY FIRE BALL				MAXIMUM DISTANCE AT OVERPRESSURE LEVEL (M)			
details	RADIATION	WEAT	WEATHER CATEGORY		OVERPRESSURE	WEATHER CATEGORY		
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D
Rupture in	4	789.44	748.14	748.14	0.02068	1392.73	1392.73	1392.73
outlet pipeline	12.5	431.50	408.53	408.53	0.1379	360.61	360.61	360.61
of compress or	37.5	178.64	162.62	162.62	0.2068	279.03	279.03	279.03

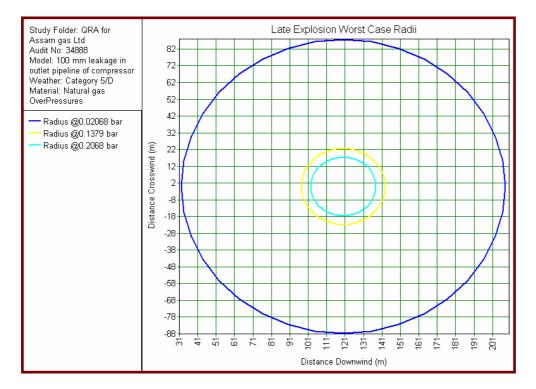
Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 41 of 160





Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 42 of 160


Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 43 of 160



ASSAM GAS COMPANY LTD.

QUANTITATIVE RISK ASSESSMENT

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 44 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

CONSEQUENCE RESULTS COMPRESSOR UNIT 3,4,5

Worst Case Scenario (WCS):-100% Catastrophic Rupture in outlet pipeline of compressor

	CONCENTRATION AT DISTANCE (M)							
Scenario details	Concentra	tion in PPM	WEATHER CATEGORY					
			3F	7D	5D			
Rupture in outlet	UFL	164806	46.52	50.80	48.13			
pipeline of compressor	LFL	43559.7	98.50	130.30	105.33			
	LFL (frac)	21779.9	175.65	236.77	169.10			

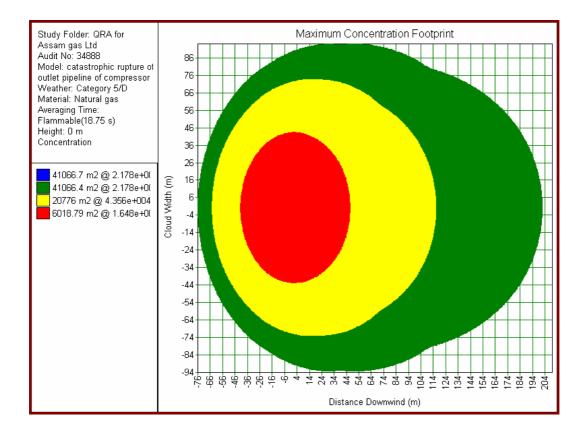
Scenario	AMAGE D BALL		BY FIRE	MAXIMUM DISTANCE AT OVERPRESSURE LEVEL (M)				
details	RADIATION	WEAT	WEATHER CATEGORY		OVERPRESSURE	WEATHER CATEGORY		
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D
Rupture in	4	844.38	799.41	799.41	0.02068	1478.08	1478.08	1478.08
outlet pipeline of	12.5	462.98	438.03	438.03	0.1379	382.71	382.71	382.71
compresso r	37.5	194.80	177.62	177.62	0.2068	296.13	296.13	296.13

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 45 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

Maximum credible loss Scenario (MCLS): Leakage due to Flange failure or Hose Failure from outlet pipeline of compressor

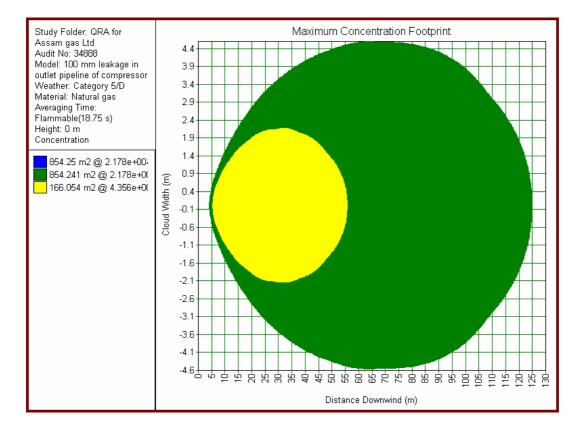
	CONCENTRATION AT DISTANCE (M)							
Scenario details	Concentratio	on in PPM	WEATHER CATEGORY					
	Concernian		3F	7D	5D			
5 mm leakage in	UFL	164806	0.50	0.52	0.52			
outlet pipeline of	LFL	43559.7	2.21	2.05	2.13			
compressor	LFL (frac)	21779.9	4.08	3.47	3.78			
25 mm leakage in	UFL	164806	2.50	2.45	2.48			
outlet pipeline of	LFL	43559.7	9.80	8.21	8.84			
compressor	LFL (frac)	21779.9	24.67	19.38	21.76			
100 mm leakage	UFL	164806	9.92	9.53	9.78			
in outlet pipeline	LFL	43559.7	63.33	61.56	60.99			
of compressor	LFL (frac)	21779.9	135.12	145.16	140.74			

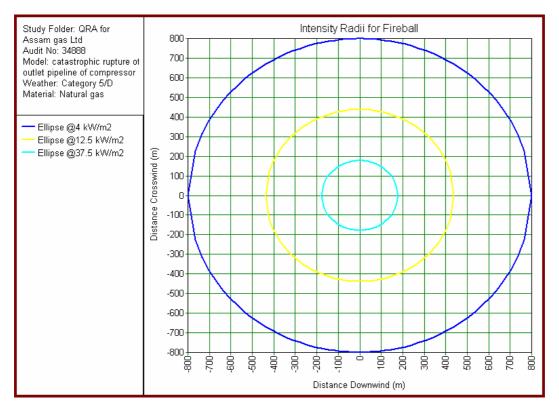

Scenario	THERMAL DAM	ANCE BY .	NCE BY JET FIRE (MAXIMUM DISTANCE AT OVERPRESS (M)			URE LEVEL		
details	RADIATION	WEAT	HER CATEC	GORY	OVERPRESSURE	WEA1	HER CAT	EGORY
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D
5 mm	4	NR	NR	NR	0.02068	NR	NR	NR
leakage in outlet	12.5	NR	NR	NR	0.1379	NR	NR	NR
pipeline of compressor	37.5	NR	NR	NR	0.2068	NR	NR	NR
25 mm leakage in	4	21.73	21.96	21.92	0.02068	39.52	27.07	37.79
outlet	12.5	17.66	18.57	18.19	0.1379	25.06	14.42	24.61
pipeline of compressor	37.5	13.95	15.19	14.50	0.2068	23.91	13.42	23.56
Approved By: Do			Doc. No.:	Doc. No.: AGCL/QRA/04		Issue No.: 01		
Controlled By:			Rev No.: (00		Page 46 of 160		

ASSAM GAS COMPANY LTD ASSAM GAS COMPANY LTD.

QUANTITATIVE RISK ASSESSMENT

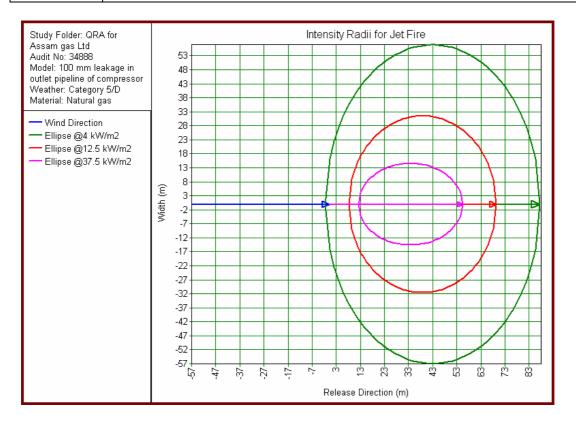
Scenario	THERMAL DAM	AGE DIST	ANCE BY .	JET FIRE	MAXIMUM DISTANCE AT OVERPRESSURE LI (M)			SURE LEVEL
details	RADIATION	WEATH	IER CATEO	GORY	OVERPRESSURE	WEA1	HER CAT	EGORY
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D
100 mm leakage in	4	87.78	87.58	87.46	0.02068	237.9	234.92	236.43
outlet	12.5	67.61	71.22	69.39	0.1379	157.94	164.58	164.97
pipeline of compressor	37.5	24.35	59.38	55.43	0.2068	151.62	159.02	159.32

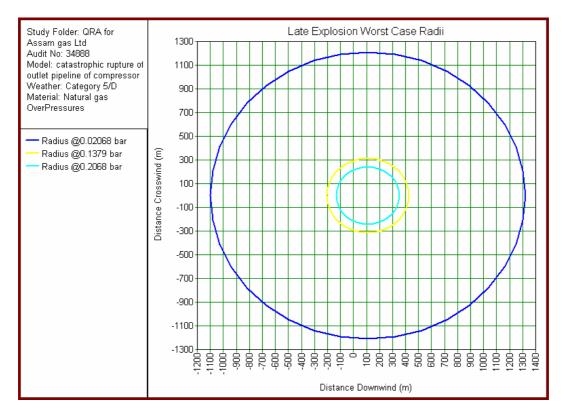

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 47 of 160



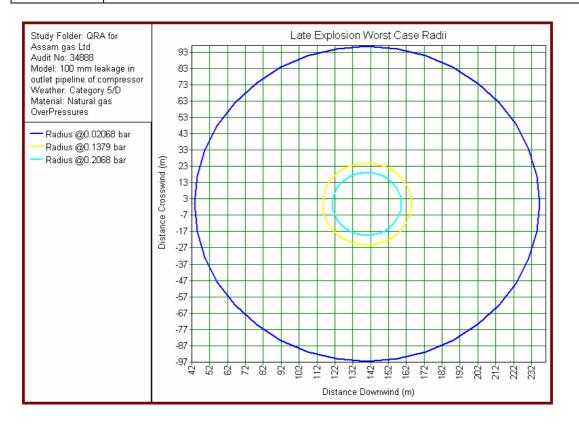
ASSAM GAS COMPANY LTD.

QUANTITATIVE RISK ASSESSMENT





Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 48 of 160



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 49 of 160

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 50 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

CONSEQUENCE RESULTS COMPRESSOR UNIT 6, 7

Worst Case Scenario (WCS):-100% Catastrophic Rupture in outlet pipeline of compressor

	CONCENTRATION AT DISTANCE (M)							
Scenario details	Concentratio	on in PPM	WEATHER CATEGORY					
	Concentration in PPM		3F	7D	5D			
Rupture in outlet	UFL	164806	47.01	51.32	48.63			
pipeline of	LFL	43559.7	99.60	131.26	106.39			
compressor	LFL (frac)	21779.9	177.40	238.82	170.57			

Scenario	THERMAL DAMAGE DISTANCE B BALL				MAXIMUM DISTANCE AT OVERPRESSURE LEVEL (M)				
details	RADIATION	WEAT	HER CAT	EGORY	OVERPRESSU	WEA	THER CATE	GORY	
	INTENSITY (KW / M2)	3F	7D	5D	RE (BAR)	3F	7D	5D	
Rupture in outlet	4	852.31	806.7 9	806.79	0.02068	1494.02	1494.02	1494.02	
pipeline of	12.5	467.31	442.0 5	442.05	0.1379	386.84	386.84	386.84	
compress or	37.5	196.45	179.0 4	179.04	0.2068	299.33	299.33	299.33	

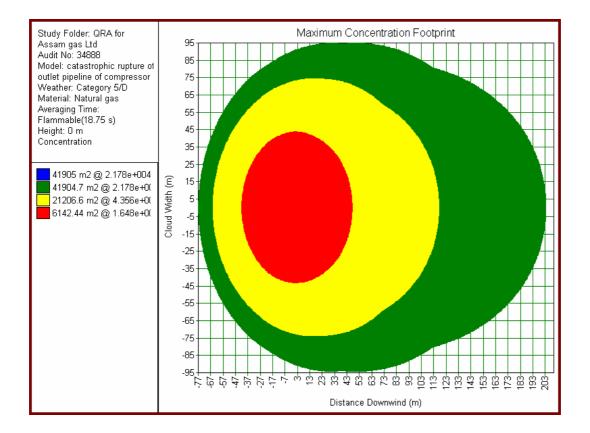
Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 51 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

Maximum credible loss Scenario (MCLS): Leakage due to Flange failure or Hose Failure from outlet pipeline of compressor

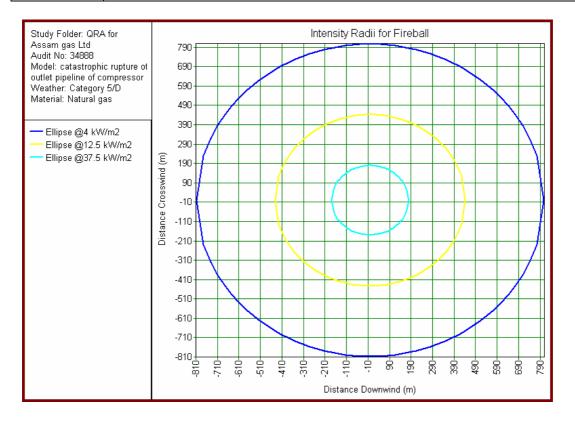
	CONCENTRATION AT DISTANCE (M)							
Scenario details	Concentrati	on in PPM	WEATHER CATEGORY					
	Concentration		3F	7D	5D			
5 mm leakage in	UFL	164806	0.53	0.52	0.53			
outlet pipeline of	LFL	43559.7	2.23	2.08	2.16			
compressor	LFL (frac)	21779.9	4.14	3.53	3.83			
25 mm leakage in	UFL	164806	2.52	2.48	2.51			
outlet pipeline of	LFL	43559.7	9.97	8.35	9.01			
compressor	LFL (frac)	21779.9	25.33	19.91	22.33			
100 mm leakage in	UFL	164806	10.09	9.69	9.93			
outlet pipeline of	LFL	43559.7	64.53	62.68	61.73			
compressor	LFL (frac)	21779.9	137.29	148.52	141.65			

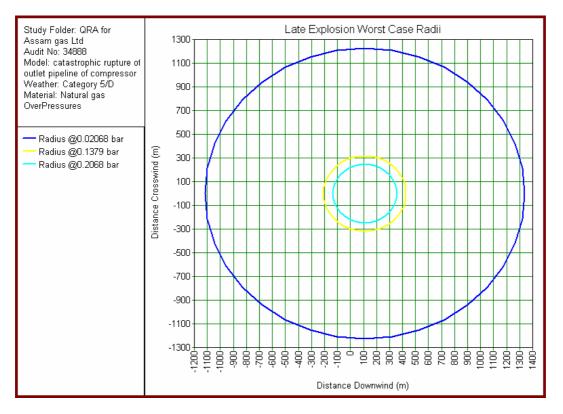
Scenario	THERMAL DAMAGE DISTANCE BY JET FIRE			MAXIMUM DISTANCE AT OVERPRESSURE LEVEL (M)				
details	RADIATION	WEATI	HER CAT	EGORY	OVERPRESSURE	WEAT	HER CATE	GORY
l	INTENSITY (kW / m2)	3F	7D	5D	(BAR)	3F	7D	5D
5 mm	4	NR	NR	NR	0.02068	NR	NR	NR
leakage in outlet	12.5	NR	NR	NR	0.1379	NR	NR	NR
pipeline of compressor	37.5	NR	NR	NR	0.2068	NR	NR	NR
25 mm	4	22.10	22.34	22.30	0.02068	39.84	27.35	38.11
leakage in outlet	12.5	17.96	18.89	18.50	0.1379	25.14	14.49	24.69
pipeline of compressor	37.5	14.25	15.54	14.84	0.2068	23.98	13.48	23.63


Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 52 of 160

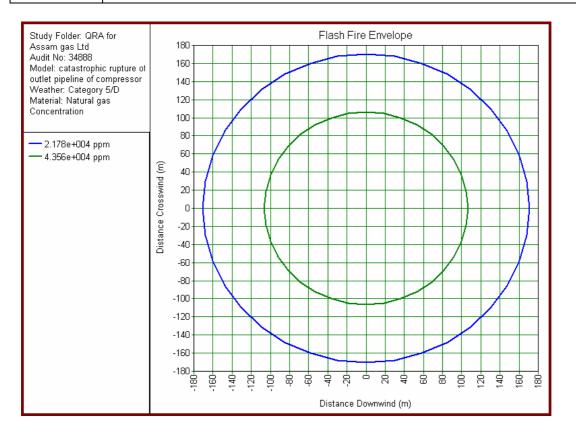
ASSAM GAS COMPANY LTD

QUANTITATIVE RISK ASSESSMENT


Scenario	THERMAL DA	AMAGE DISTANCE BY JET FIRE			MAXIMUM DISTANCE AT OVERPRESSURE			
details	RADIATION	WEATHER CATEGORY		OVERPRESSURE	WEAT	HER CATE	GORY	
J	INTENSITY (kW / m2)	3F	7D	5D	(BAR)	3F	7D	5D
100 mm leakage in	4	89.09	88.85	88.73	0.02068	239.58	236.92	237.77
outlet	12.5	68.56	72.19	70.35	0.1379	158.37	165.10	165.31
pipeline of compressor	37.5	53.45	60.18	56.15	0.2068	151.95	159.42	159.59



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 53 of 160



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 54 of 160

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 55 of 160

GREEN

THE GREEN PEOPLE

QUANTITATIVE RISK ASSESSMENT

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

CONSEQUENCE RESULTS COMPRESSOR UNIT 8,9,10,11

Worst Case Scenario (WCS):-100% Catastrophic Rupture

	CONCE		ATION AT DISTANCE (M)			
Scenario details	Conce	entration in PPM	WEATHER CATEGORY			
			3F	7D	5D	
Rupture in outlet pipeline	UFL	164806	43.89	48.07	45.48	
of compressor	LFL	43559.7	92.68	125.21	99.73	
	LFL (frac)	21779.9	166.42	226.20	161.55	

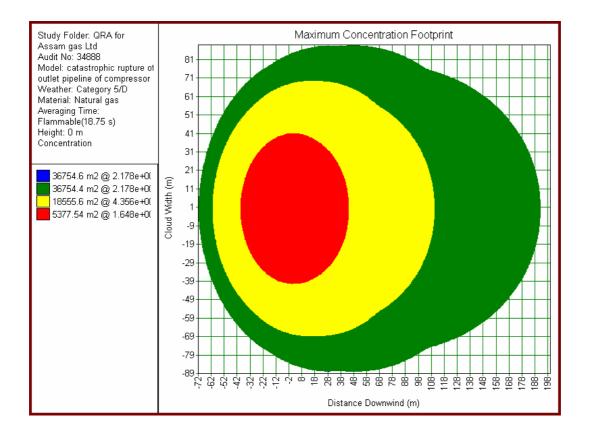
	THERMAL D	AMAGE D	ISTANCE	BY FIRE	MAXIMUM DISTANCE AT OVERPRESSURE			
Scenario		BALL			LEVEL (M)			
details	RADIATION	WEATHER CATEGORY		OVERPRESSURE	WEATHER CATEGORY			
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D
Rupture in	4	789.44	748.14	748.14	0.02068	1392.7	1392.7	1392.7
outlet pipeline of	12.5	431.5	408.53	408.53	0.1379	360.61	360.61	360.61
compressor	37.5	178.64	162.62	162.62	0.2068	279.03	279.03	279.03

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 56 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

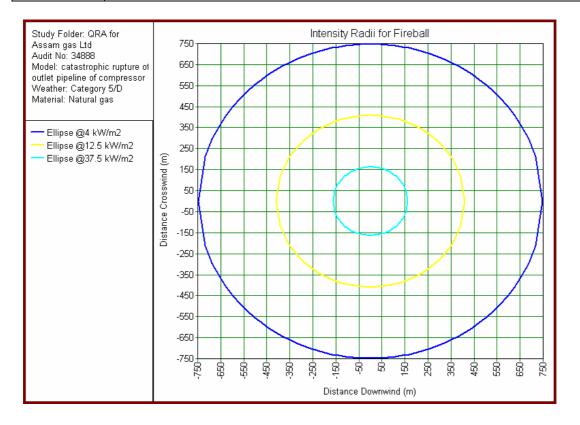
Maximum credible loss Scenario (MCLS): Leakage due to Flange failure or Hose Failure from outlet pipeline of compressor

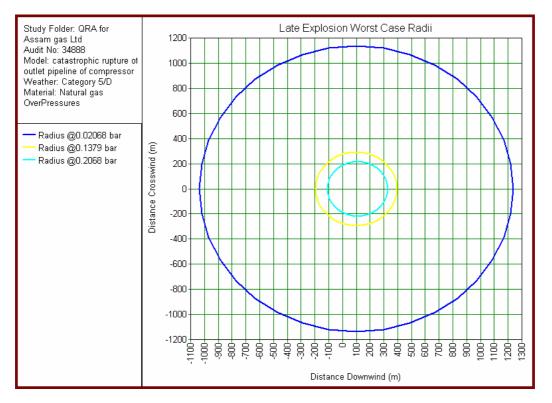
	CONCENTRATION AT DISTANCE (M)							
Scenario details	Concentrat	ion in PPM	WEATHER CATEGORY					
	Concentrat		3F	7D	5D			
5 mm leakage in	UFL	164806	0.44	0.44	0.45			
outlet pipeline of	LFL	43559.7	2.04	1.87	1.96			
compressor	LFL (frac)	21779.9	3.76	3.07	3.42			
25 mm leakage in	UFL	164806	2.36	2.31	2.35			
outlet pipeline of	LFL	43559.7	8.82	7.49	8.06			
compressor	LFL (frac)	21779.9	21.17	16.46	18.33			
100 mm leakage in	UFL	164806	9.13	8.63	8.93			
outlet pipeline of	LFL	43559.7	56.67	54.42	54.68			
compressor	LFL (frac)	21779.9	121.81	132.15	128.05			


Scenario	THERMAL DAMAGE DISTANCE BY JET FIRE				MAXIMUM DISTANCE AT OVERPRESSURE LEVEL (M)			
details	RADIATION	WEA	ATHER CATE	GORY	OVERPRESSUR	WEATH	ER CATE	GORY
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D
5 mm	4	NR	NR	NR	0.02068	NR	NR	NR
leakage in outlet	12.5	NR	NR	NR	0.1379	NR	NR	NR
pipeline of compressor	37.5	NR	NR	NR	0.2068	NR	NR	NR
25 mm	4	19.76	19.94	19.93	0.02068	37.70	25.55	26.19
leakage in outlet	12.5	16.06	16.84	16.52	0.1379	24.58	14.03	14.19
pipeline of compressor	37.5	12.14	12.49	11.97	0.2068	23.55	13.11	13.24
100 mm	4	80.83	80.84	80.66	0.02068	217.02	215.7	207.8
Approved By:			Doc. No.: AG	CL/QKA/0	4	ssu <mark>e no.: v1</mark>		
Controlled By:			Rev No.: 00		1	Page 57 of 16	0	

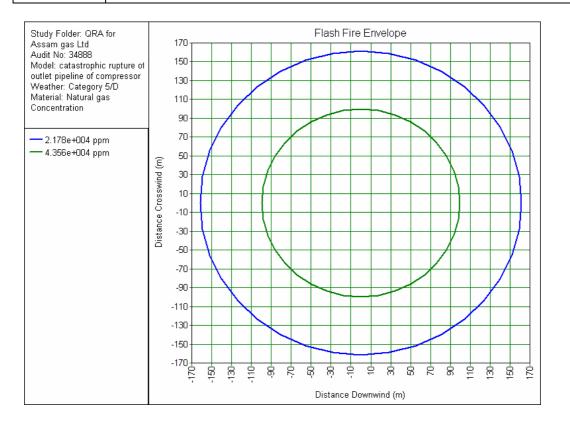
ASSAM GAS COMPANY LTD

QUANTITATIVE RISK ASSESSMENT


Scenario	THERMAL DAM	IERMAL DAMAGE DISTANCE BY JET FIRE				MAXIMUM DISTANCE AT OVERPRESSURE LEVEL (M)			
details	RADIATION			OVERPRESSURE	WEATHER CATEGORY				
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D	
leakage in							4	1	
outlet pipeline of	12.5	62.55	65.97	64.26	0.1379	145.12	152.2	142.7 4	
compressor	37.5	49.01	55.06	51.53	0.2068	139.44	147.1 8	137.5 9	



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 58 of 160



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 59 of 160

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 60 of 160

ASSAM GAS COMPANY LTD.

QUANTITATIVE RISK ASSESSMENT

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

CONSEQUENCE RESULTS - AGCL COMPRESSOR STATION TO BVFCL NAMRUP

Worst Case Scenario (WCS):-100% Catastrophic Rupture

	CONCENTRATION AT DISTANCE (M)							
Scenario details	Concentration	in PPM	WEATHER CATEGORY					
		3F	7D	5D				
Pupture in buried	UFL	164806	3.77	4.12	3.98			
Rupture in buried pipeline	LFL	43559.7	6.87	9.28	8.30			
	LFL (frac)	21779.9	9.67	14.71	12.66			

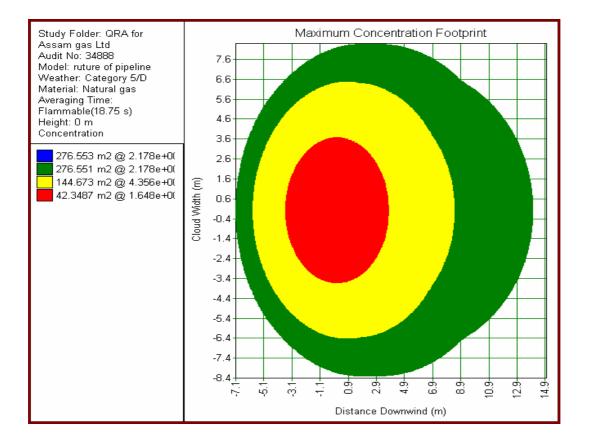
Scenario	THERMAL D	AMAGE D BALL		BY FIRE	MAXIMUM DISTANCE AT OVERPRESSURE LEVEL (M)			
details	RADIATION		HER CATE	GORY	OVERPRESSURE	WEATHER CATEGORY		
	INTENSITY (kW / m2)	3F	7D	5D	(BAR)	3F	7D	5D
Rupture in	4	72.55	70.41	70.41	0.02068	138.67	138.67	138.67
buried	12.5	37.03	35.80	35.80	0.1379	35.91	35.91	35.91
pipeline	37.5	8.02	6.14	6.14	0.2068	27.78	27.78	27.78

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 61 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

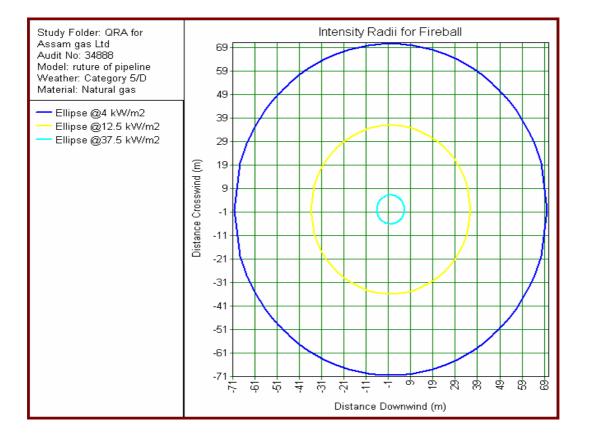
Maximum credible loss Scenario (MCLS): Leakage due to Flange failure or Hose Failure

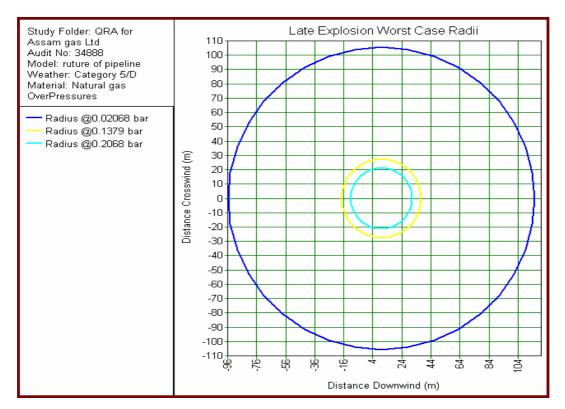
	CONCENTRATION AT DISTANCE (M)								
Scenario details	Concentratio	n in PPM	WEATHER CATEGORY						
			3F	7D	5D				
5 mm leakage	UFL	164806	0.44	0.44	0.44				
in buried	LFL	43559.7	2.03	1.85	1.95				
pipeline	LFL (frac)	21779.9	3.73	3.04	3.39				
25 mm leakage	UFL	164806	2.35	2.30	2.34				
in buried	LFL	43559.7	8.77	7.45	8.01				
pipeline	LFL (frac)	21779.9	20.99	16.30	18.10				
100 mm	UFL	164806	9.06	8.56	8.86				
leakage in	LFL	43559.7	56.26	53.85	54.22				
buried pipeline	LFL (frac)	21779.9	123.32	131.13	127.11				


Scenario	THERMAL DAMAGE DISTANCE BY JET FIRE				MAXIMUM DISTANCE AT OVERPRESSURE LEVEL (M)				
details	RADIATION	WEAT	HER CA	TEGORY	OVERPRESSURE	WEA	THER CATE	GORY	
	INTENSITY (kW / m2)	3F	7D	5D	(BAR)	3F	7D	5D	
5 mm	4	NR	NR	NR	0.02068	NR	NR	NR	
leakage in buried	12.5	NR	NR	NR	0.1379	NR	NR	NR	
pipeline	37.5	NR	NR	NR	0.2068	NR	NR	NR	
25 mm	4	19.61	19.79	19.78	0.02068	37.59	25.45	26.08	
leakage in buried	12.5	15.94	16.72	16.40	0.1379	24.56	14.00	14.16	
pipeline	37.5	11.97	12.04	11.61	0.2068	23.53	13.10	13.22	
100 mm	4	72.55	70.41	70.41	0.02068	138.67	138.67	138.67	
Approved By:	Approved By:			Doc. No.: AGCL/QRA/04			Issue No.: 01		
Controlled By:			Rev No.: 00			Page 62 of 160			

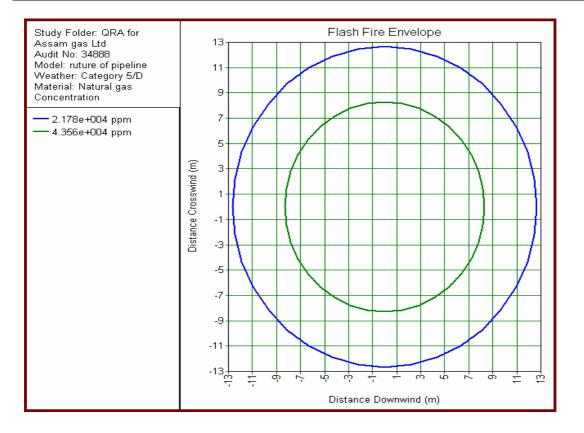
ASSAM GAS COMPANY LTD

QUANTITATIVE RISK ASSESSMENT


Scenario	THERMAL DAMAGE DISTANCE BY JET FIRE RADIATION WEATHER CATEGORY				MAXIMUM DISTANCE AT OVERPRESSURE LEV (M) WEATHER CATEGORY			
details	INTENSITY (kW / m2)	3F	7D	5D	OVERPRESSURE (BAR)	3F	7D	5D
leakage in buried	12.5	37.03	35.80	35.80	0.1379	35.91	35.91	35.91
pipeline	37.5	8.02	6.14	6.14	0.2068	27.78	27.78	27.78



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 63 of 160



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 64 of 160

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 65 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

CONSEQUENCE RESULTS- AGCL COMPRESSOR STATION TO NTPS NAMRUP

Worst Case Scenario (WCS):-100% Catastrophic Rupture

Scenario details	CONCENTRATION AT DISTANCE (M)							
	Concentra	tion in PPM	WEATHER CATEGORY					
			3F	7D	5D			
Pupturo in buriod	UFL	164806	4.40	4.83	4.69			
Rupture in buried - pipeline	LFL	43559.7	8.16	10.88	9.61			
	LFL (frac)	21779.9	11.38	19.49	15.13			

Scenario	THERMAL DAMAGE DISTANCE BY FIRE BALL				MAXIMUM DISTANCE AT OVERPRESSURE LEVEL (M)			
details RADIATION		WEATHER CATEGORY			OVERPRESSURE	WEATHER CATEGORY		
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D
Rupture in	4	84.51	81.94	81.94	0.02068	160.24	160.24	160.24
buried	12.5	43.37	41.88	41.88	0.1379	41.49	41.49	41.49
pipeline	37.5	10.46	8.48	8.48	0.2068	32.10	32.10	32.10

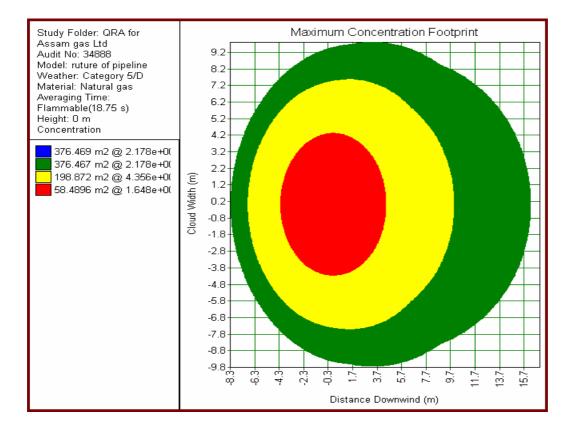
Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 66 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

Maximum credible loss Scenario (MCLS): Leakage due to Flange failure or Hose Failure

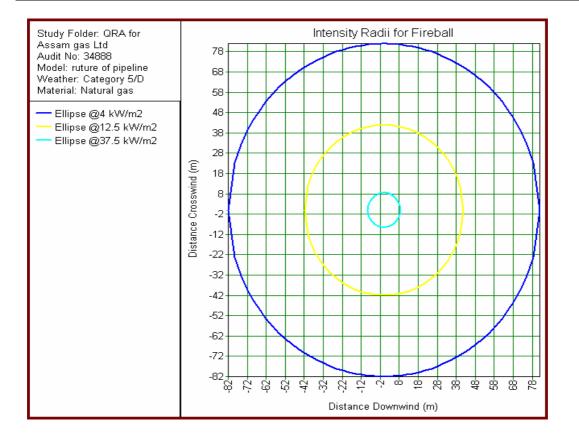
S oonario	CONCENTRATION AT DISTANCE (M)						
Scenario details	Concentra	tion in PPM	WEATHER CATEGORY				
	Concernia		3F	7D	5D		
5 mm leakage	UFL	164806	0.44	0.44	0.44		
in buried	LFL	43559.7	2.03	1.85	1.95		
pipeline	LFL (frac)	21779.9	3.73	3.04	3.39		
25 mm	UFL	164806	2.35	2.30	2.34		
leakage in	LFL	43559.7	8.77	7.45	8.01		
buried pipeline	LFL (frac)	21779.9	20.99	16.30	18.10		
100 mm	UFL	164806	9.06	8.56	8.86		
leakage in	LFL	43559.7	56.26	53.85	54.22		
buried pipeline	LFL (frac)	21779.9	121.14	131.13	127.11		

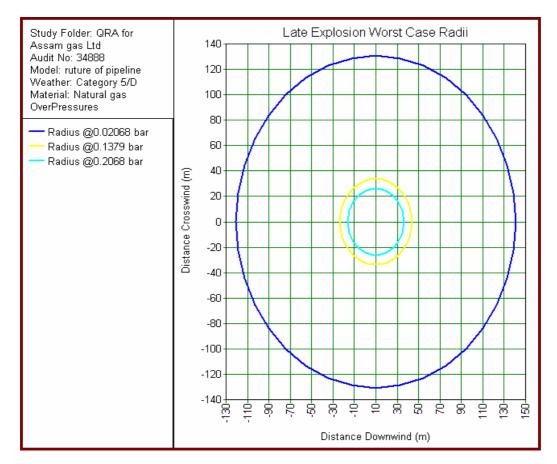
Scenario	THERMAL DA	MAGE DISTANCE BY JET FIRE			MAXIMUM DISTANCE AT OVERPRESSURE LEVEL (M)			
details	RADIATION	WEA	THER CAT	EGORY	OVERPRESSURE	WEATHER CATEGORY		
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D
5 mm	4	NR	NR	NR	0.02068	NR	NR	NR
leakage in buried	12.5	NR	NR	NR	0.1379	NR	NR	NR
pipeline	37.5	NR	NR	NR	0.2068	NR	NR	NR
25 mm	4	19.61	19.79	19.78	0.02068	37.59	25.45	26.08
leakage in buried	12.5	15.94	16.72	16.40	0.1379	24.56	14.00	14.16
pipeline	37.5	11.97	12.04	11.61	0.2068	23.53	13.10	13.22
100 mm	4	84.51	81.94	81.94	0.02068	160.24	160.24	160.24


Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 67 of 160

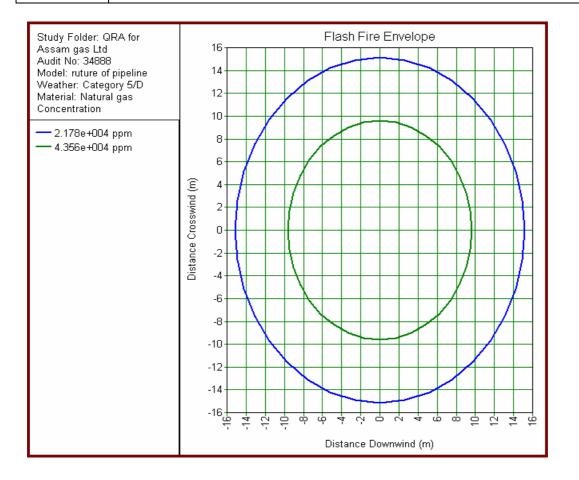
ASSAM GAS COMPANY LTD (A GDVI'S & ASSM UNDERTACING) ASSAM GAS COMPANY LTD.

QUANTITATIVE RISK ASSESSMENT


Scenario	THERMAL DA	MAGE DI	STANCE B	Y JET FIRE	MAXIMUM DISTANCE AT OVERPRESSURE LEVEL (M)			
details	RADIATION WEATHER CATEGORY		OVERPRESSURE	WEATHER CATEGORY				
INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D	
leakage in buried	12.5	43.37	41.88	41.88	0.1379	41.49	41.49	41.49
pipeline	37.5	10.46	8.48	8.48	0.2068	32.10	32.10	32.10



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 68 of 160



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 69 of 160

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 70 of 160

ASSAM GAS COMPANY LTD.

QUANTITATIVE RISK ASSESSMENT

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

CONSEQUENCE RESULTS- AGCL COMPRESSOR STATION TO NTPS NAMRUP

	CONCENTRATION AT DISTANCE (M)						
Scenario details	Concen	tration in PPM	WEATHER CATEGORY				
			3F	7D	5D		
Rupture in buried	UFL	164806	3.67	4.01	3.87		
pipeline	LFL	43559.7	6.71	9.11	8.15		
	LFL (frac)	21779.9	9.45	16.25	12.45		

Scenario					L MAXIMUM DISTANCE AT OVERP (M) WEATHER			
details	RADIATION INTENSITY (KW / M2)	3F	THER CAT	5D	OVERPRESSURE (BAR)	3F	7D	5D
Rupture	4	63.907	62.041	62.041	0.02068	133.18	133.18	133.18
in buried	12.5	31.6	30.492	30.492	0.1379	34.48	34.48	34.48
pipeline	37.5	NR	NR	NR	0.2068	26.68	26.68	26.68

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 71 of 160

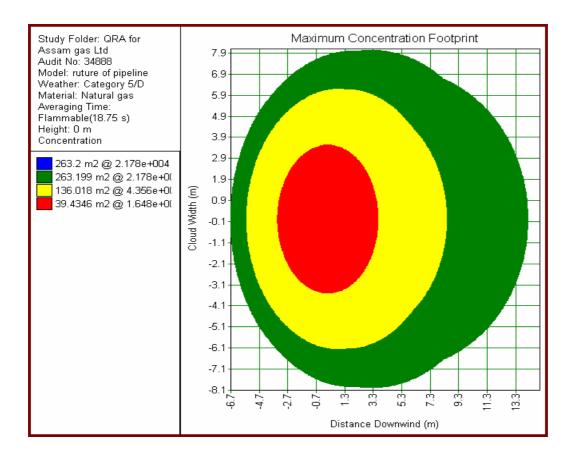
REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

Maximum credible loss Scenario (MCLS): Leakage due to Flange failure or Hose Failure

	CONCENTRATION AT DISTANCE (M)							
Scenario details	Concentra	tion in PPM	WEAT	HER CATEGO	RY			
	Concentia		3F	7D	5D			
	UFL	164806	0.33	0.33	0.34			
5 mm leakage in buried pipeline	LFL	43559.7	1.48	1.34	1.39			
	LFL (frac)	21779.9	2.65	2.42	2.60			
	UFL	164806	1.92	1.88	1.91			
25 mm leakage in buried pipeline	LFL	43559.7	7.03	5.97	6.57			
	LFL (frac)	21779.9	14.32	10.58	12.04			
100 mm leakage in buried pipeline	UFL	164806	7.02	6.70	6.89			
	LFL	43559.7	41.66	37.30	39.06			
	LFL (frac)	21779.9	94.98	96.46	93.56			

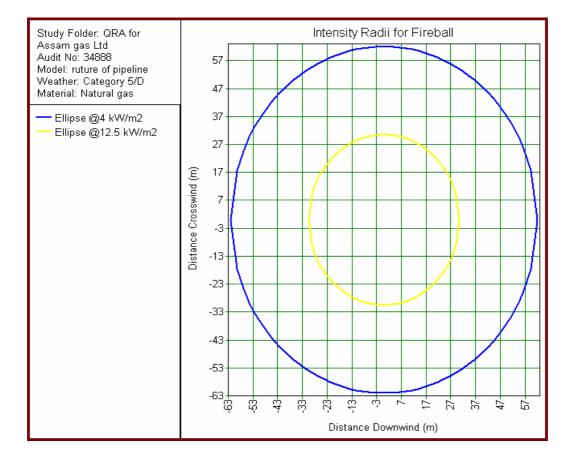
THERMAL DAM		AGE DISTA	GE DISTANCE BY JET FIRE		MAXIMUM DISTANCE AT OVERPRESSURE LEVEL (M)			
details	RADIATION	WEATH	IER CAT	EGORY	OVERPRESSURE	WEATH	ER CATI	GORY
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D
5 mm	4	NR	NR	NR	0.02068	NR	NR	NR
leakage in buried	12.5	NR	NR	NR	0.1379	NR	NR	NR
pipeline	37.5	NR	NR	NR	0.2068	NR	NR	NR
25 mm	4	14.92	14.98	15.02	0.02068	24.02	22.09	23.04
leakage in buried	12.5	11.95	12.33	12.17	0.1379	13.63	13.13	13.38
pipeline	37.5	NR	NR	NR	0.2068	12.81	12.42	12.61
100 mm leakage in	4	63.91	62.04	62.04	0.02068	133.18	133.1 8	133.18

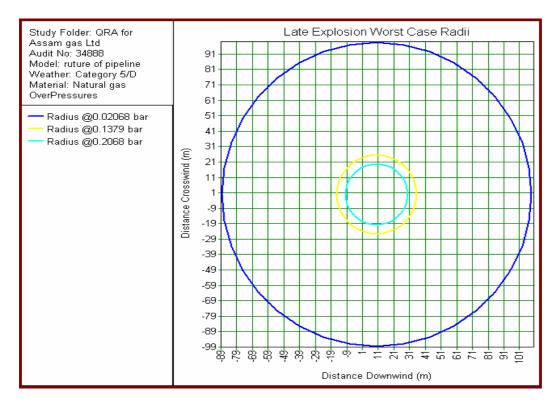
Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 72 of 160


ASSAM GAS COMPANY LTD (A DIT OF ASSM UNDERLING)

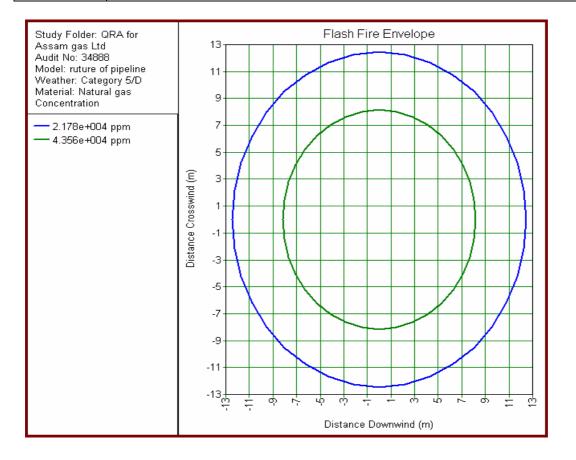
ASSAM GAS COMPANY LTD.

QUANTITATIVE RISK ASSESSMENT


buried pipeline	12.5	31.60	30.49	30.49	0.1379	34.48	34.48	34.48
pipeinte	37.5	NR	NR	NR	0.2068	26.68	26.68	26.68



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 73 of 160



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 74 of 160

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 75 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

CONSEQUENCE RESULTS – AGCL TO BVFCL NAMRUP

	CONCENTRATION AT DISTANCE (M)							
Scenario details	Concentratio	on in PPM	W	EATHER CATEG	ORY			
			3F	7D	5D			
Rupture in buried	UFL	164806	3.83	4.19	4.06			
pipeline going from	LFL	43559.7	7.03	9.65	8.48			
AGCL to BVFCL Namrup	LFL (frac)	21779.9	9.89	17.70	13.44			

Scenario	THERMAL DA	MAGE DI BALL	STANCE I	BY FIRE	MAXIMUM DISTANCE AT OVERPRESSURE LE (M)			RE LEVEL
details	RADIATION WEATHER CATEGORY		GORY	OVERPRESSURE	WEA	THER CATEO	GORY	
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D
Rupture in buried	4	66.71	64.74	64.74	0.02068	138.67	138.67	138.67
pipeline going from	12.5	33.05	31.88	31.88	0.1379	35.91	35.91	35.91
AGCL to BVFCL Namrup	37.5	NR	NR	NR	0.2068	27.78	27.78	27.78

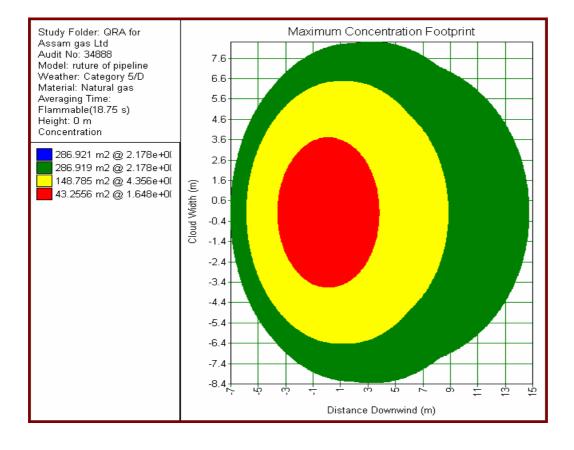
Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 76 of 160

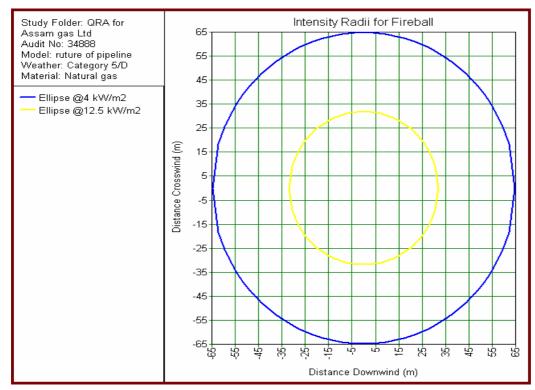
REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

Maximum credible loss Scenario (MCLS): Leakage due to Flange failure or Hose Failure

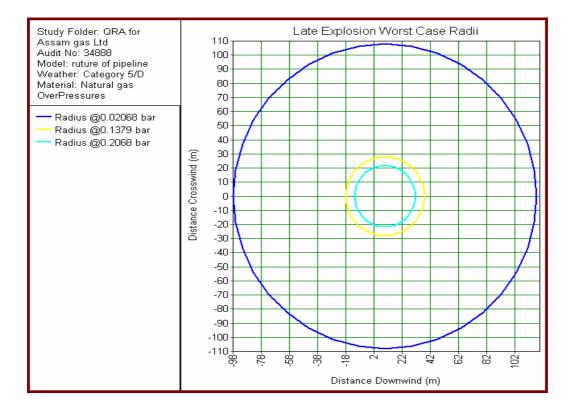
	CONCENTRATION AT DISTANCE (M)						
Scenario details	Concentrat	ion in PPM	WEA	WEATHER CATEGORY			
	Concentrat		3F	7D	5D		
Rupture in buried	UFL	164806	0.33	0.33	0.34		
pipeline going from	LFL	43559.7	1.48	1.34	1.39		
AGCL to BVFCL Namrup	LFL (frac)	21779.9	2.65	2.42	2.60		
Rupture in buried	UFL	164806	1.92	1.88	1.91		
pipeline going from	LFL	43559.7	7.03	5.97	6.57		
AGCL to BVFCL Namrup	LFL (frac)	21779.9	14.32	10.58	12.04		
Rupture in buried	UFL	164806	7.02	6.70	6.89		
pipeline going from	LFL	43559.7	41.66	37.30	39.06		
AGCL to BVFCL Namrup	LFL (frac)	21779.9	94.98	96.46	93.56		

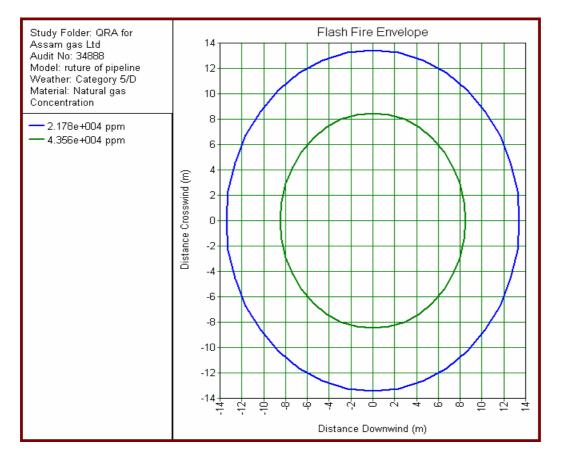
Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 77 of 160




Scenario	THERMAL DAMAGE DISTANCE BY JET FIRE				MAXIMUM DISTANCE AT OVERPRESSURE LEVEL (M)			SURE LEVEL
details	RADIATION	WEATH	ER CAT	EGORY	OVERPRESSURE	WE	ATHER CA	TEGORY
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D
5 mm	4	NR	NR	NR	0.02068	NR	NR	NR
leakage in buried	12.5	NR	NR	NR	0.1379	NR	NR	NR
pipeline	37.5	NR	NR	NR	0.2068	NR	NR	NR
25 mm	4	14.92	14.9 8	15.02	0.02068	24.02	22.09	23.04
leakage in buried	12.5	11.95	12.3 3	12.17	0.1379	13.63	13.13	13.38
pipeline	37.5	NR	NR	NR	0.2068	12.81	12.42	12.61
100 mm	4	66.71	64.7 4	64.74	0.02068	138.67	138.67	138.67
leakage in buried	12.5	33.05	31.8 8	31.88	0.1379	35.91	35.91	35.91
pipeline	37.5	NR	NR	NR	0.2068	27.78	27.78	27.78

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 78 of 160





Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 79 of 160

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 80 of 160

GREEN CHIEN PEOPLE

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

CONSEQUENCE RESULTS – AGCL TO NAMRUP

	CONCENTRATION AT DISTANCE (M)						
Scenario details	Concentration	WEATHER CATEGORY					
		3F	7D	5D			
Rupture in buried pipeline	UFL	164806	3.79	4.15	4.01		
	LFL	43559.7	6.96	9.46	8.40		
	LFL (frac)	21779.9	9.78	17.42	13.15		

Scenario	THERMAL D	DAMAGE I BAL		BY FIRE	MAXIMUM DISTANCE AT OVERPRESSURE LE (M)			URE LEVEL
details	RADIATION		VEATHER CATEGORY		OVERPRESSURE	WEATHER CATEGORY		
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D
Rupture in	4	66.03	64.09	64.09	0.02068	137.34	137.34	137.34
buried	12.5	32.69	31.54	31.54	0.1379	35.56	35.56	35.56
pipeline	37.5	NR	NR	NR	0.2068	27.52	27.52	27.52

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 81 of 160

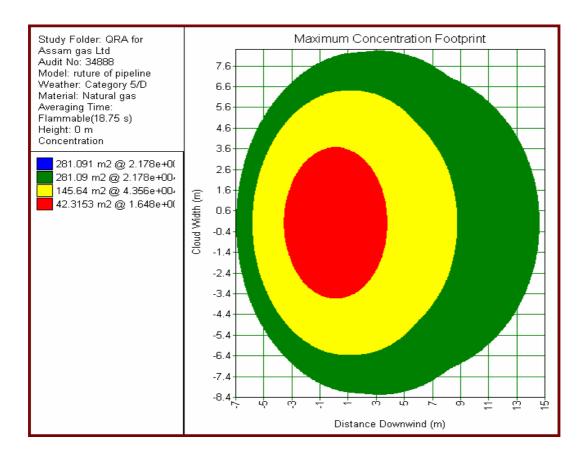
REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

Maximum credible loss Scenario (MCLS): Leakage due to Flange failure or Hose Failure from pipeline

	CONCENTRATION AT DISTANCE (M)						
Scenario details	Concentrat	ion in PPM	WEATHER CATEGORY				
	Concentrat		3F	7D	5D		
E source la characteria	UFL	164806	0.33	0.33	0.34		
5 mm leakage in buried pipeline	LFL	43559.7	1.48	1.34	1.39		
	LFL (frac)	21779.9	2.65	2.42	2.60		
25 mm leakage	UFL	164806	1.92	1.88	1.91		
in buried pipeline	LFL	43559.7	7.03	5.97	6.57		
	LFL (frac)	21779.9	14.32	10.58	12.04		
100 mm leakage in buried pipeline	UFL	164806	7.02	6.70	6.89		
	LFL	43559.7	41.66	37.30	39.06		
	LFL (frac)	21779.9	94.98	96.46	93.56		

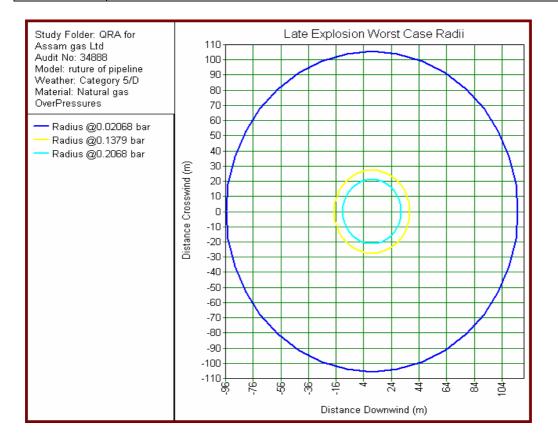
Scenario	THERMAL DAMAGE DISTANCE BY JET FIRE				MAXIMUM DISTANCE AT OVERPRESSURE LEVEL (M)			
details	RADIATION	WEATHER CATEGORY			OVERPRESSURE	WEATH	HER CATEC	GORY
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D
5 mm	4	NR	NR	NR	0.02068	NR	NR	NR
leakage in buried	12.5	NR	NR	NR	0.1379	NR	NR	NR
pipeline	37.5	NR	NR	NR	0.2068	NR	NR	NR
25 mm	4	14.92	14.98	15.02	0.02068	24.02	22.09	23.04
leakage in buried	12.5	11.95	12.33	12.17	0.1379	13.63	13.13	13.38
pipeline	37.5	NR	NR	NR	0.2068	12.81	12.42	12.61
100 mm leakage in	4	66.03	64.09	64.09	0.02068	137.34	137.34	137.3 4

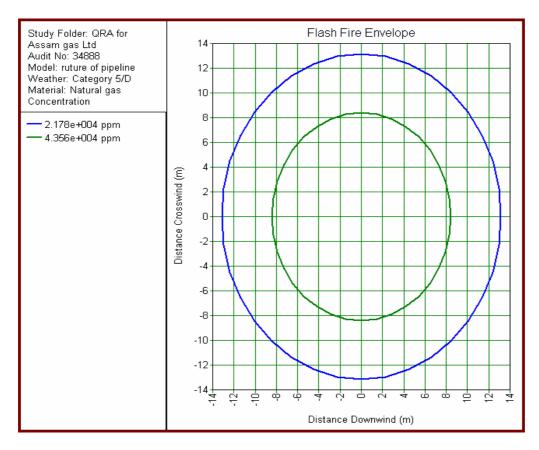
Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 82 of 160


ASSAM GAS COMPANY LTD (A GUT OF ASSM UNDERTICATION)

ASSAM GAS COMPANY LTD.

QUANTITATIVE RISK ASSESSMENT


buried pipeline	12.5	32.69	31.54	31.54	0.1379	35.56	35.56	35.56
pipeille	37.5	NR	NR	NR	0.2068	27.52	27.52	27.52



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 83 of 160

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 84 of 160

GREEN

THE GREEN PEOPLE

QUANTITATIVE RISK ASSESSMENT

REPORT NO.:-GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

CONSEQUENCE RESULTS – DILIAJNAN TO DIBRUGARH

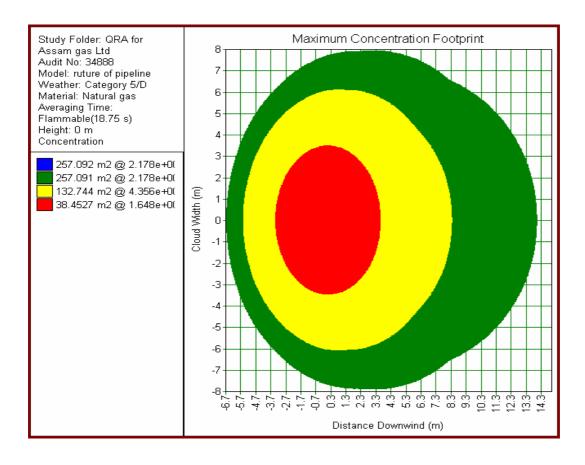
	CONCENTRATION AT DISTANCE (M)							
Scenario details	Concentration i	WEATHER CATEGORY						
			3F	7D	5D			
Rupture in buried pipeline	UFL	164806	3.63	3.96	3.83			
	LFL	43559.7	6.62	9.03	8.06			
	LFL (frac)	21779.9	9.33	15.49	12.33			

Scenario	THERMAL D	DAMAGE DISTANCE BY FIRE BALL			MAXIMUM DISTANCE AT OVERPRESS LEVEL (M)			SSURE
details	RADIATION	TION WEATHER CATEGOR		EGORY				GORY
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D
Rupture in	4	63.17	61.331	61.331	0.02068	131.73	131.73	131.73
buried	12.5	31.22	30.128	30.128	0.1379	34.11	34.11	34.11
pipeline	37.5	NR	NR	NR	0.2068	26.39	26.39	26.39

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 85 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

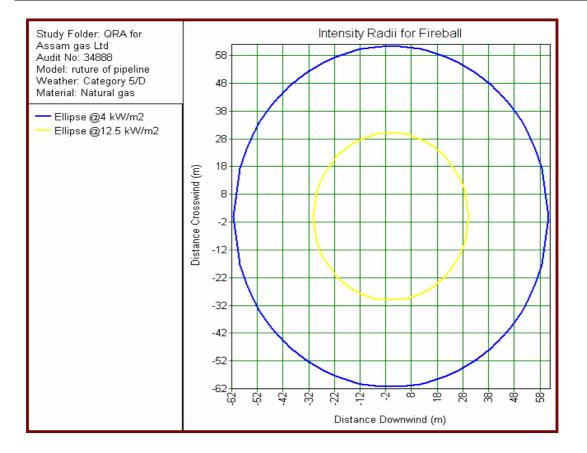
Maximum credible loss Scenario (MCLS): Leakage due to Flange failure or Hose Failure

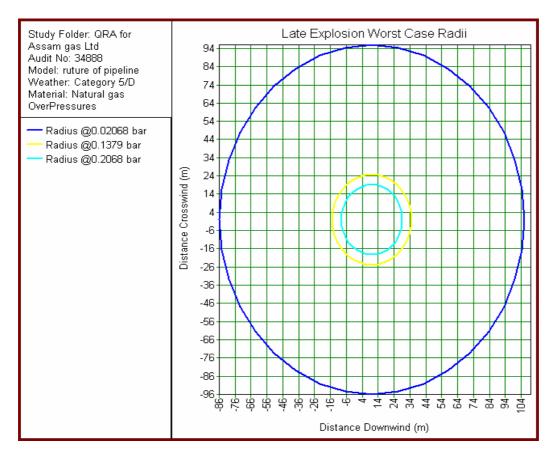

	CONCENTRATION AT DISTANCE (M)							
Scenario details	Concentrat	ion in PPM	WEATHER CATEGORY					
	Concernia		3F	7D	5D			
E	UFL	164806	0.33	0.33	0.34			
5 mm leakage in buried pipeline	LFL	43559.7	1.48	1.34	1.39			
	LFL (frac)	21779.9	2.65	2.42	2.60			
25 mm leakage in buried pipeline	UFL	164806	1.92	1.88	1.91			
	LFL	43559.7	7.03	5.97	6.57			
	LFL (frac)	21779.9	14.32	10.58	12.04			
100 mm lookogo	UFL	164806	7.02	6.70	6.89			
100 mm leakage in buried pipeline	LFL	43559.7	41.66	37.30	39.06			
	LFL (frac)	21779.9	94.98	96.46	93.56			

Scenario	THERMAL DAMAGE DISTANCE BY JET FIRE				MAXIMUM DISTANCE AT OVERPRESSURE LEVEL (M)			
details	RADIATION	WEATH	ER CATE	GORY	OVERPRESSURE	WEA	THER CAT	EGORY
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D
5 mm	4	NR	NR	NR	0.02068	NR	NR	NR
leakage in buried	12.5	NR	NR	NR	0.1379	NR	NR	NR
pipeline	37.5	NR	NR	NR	0.2068	NR	NR	NR
25 mm	4	14.92	14.98	15.02	0.02068	24.02	22.09	23.04
leakage in buried	12.5	11.95	12.33	12.17	0.1379	13.63	13.13	13.38
pipeline	37.5	NR	NR	NR	0.2068	12.81	12.42	12.61
100 mm	4	63.17	61.33	61.33	0.02068	131.73	131.73	131.73

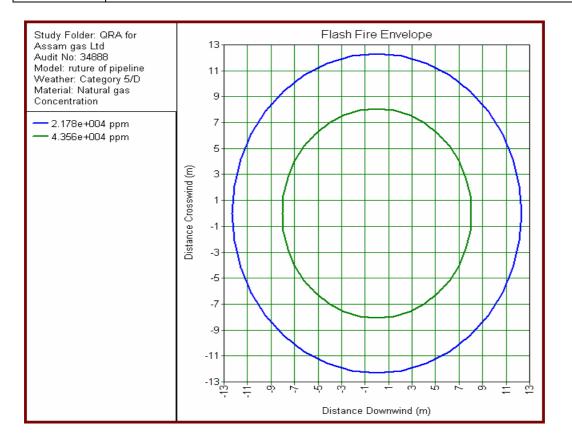
Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 86 of 160

A	ASSAM GAS COMPANY LTD.	GREEN
ASSAM GAS COMPANY LTD	QUANTITATIVE RISK ASSESSMENT	BROUG
(A COVIT OF ASSAM UNDERTAKING)	REPORT NO.:-GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01	THE GREEN PEOPLE


le	eakage in buried	12.5	31.22	30.13	30.13	0.1379	34.11	34.11	34.11
ł	pipeline	37.5	NR	NR	NR	0.2068	26.39	26.39	26.39



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 87 of 160



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 88 of 160

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 89 of 160

CONSEQUENCE RESULTS – KATHALGURI OCS OF OIL TO NEEPCO

	CONCENTRATION AT DISTANCE (M)							
Scenario details	Concentration i	WEATHER CATEGORY						
	Concentration	3F	7D	5D				
Pupture in buried	UFL	164806	4.30	4.72	4.58			
Rupture in buried pipeline	LFL	43559.7	7.96	11.38	9.42			
	LFL (frac)	21779.9	11.12	20.25	15.92			

Scenario					MAXIMUM DISTANCE AT OVERPRESSURE LEVEL (M) WEATHER CATEGORY			
details	RADIATION INTENSITY (KW / M2)	3F	HER CATEO	5D	OVERPRESSURE (BAR)	3F	7D	5D
Rupture in	4	74.851	72.591	72.591	0.02068	154.60	154.60	154.60
buried	12.5	37.259	35.923	35.923	0.1379	40.03	40.03	40.03
pipeline	37.5	NR	NR	NR	0.2068	30.97	30.97	30.97

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 90 of 160

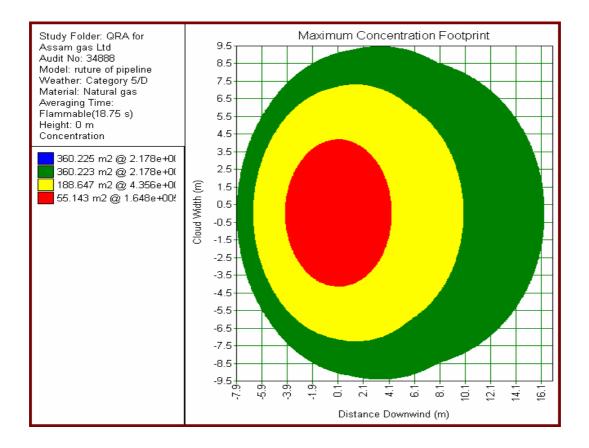
REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

Maximum credible loss Scenario (MCLS): Leakage due to Flange failure or Hose Failure

	CONCENTRATION AT DISTANCE (M)								
Scenario details	Concentrat	ion in PPM	WEATHER CATEGORY						
			3F	7D	5D				
E anna la channa in	UFL	164806	0.33	0.33	0.34				
5 mm leakage in buried pipeline	LFL	43559.7	1.48	1.34	1.39				
	LFL (frac)	21779.9	2.65	2.42	2.60				
25 mm leakage	UFL	164806	1.92	1.88	1.91				
in buried pipeline	LFL	43559.7	7.03	5.97	6.57				
	LFL (frac)	21779.9	14.32	10.58	12.04				
100 mm leakage	UFL	164806	7.02	6.70	6.89				
in buried pipeline	LFL	43559.7	41.66	37.30	39.06				
	LFL (frac)	21779.9	94.98	96.46	93.56				

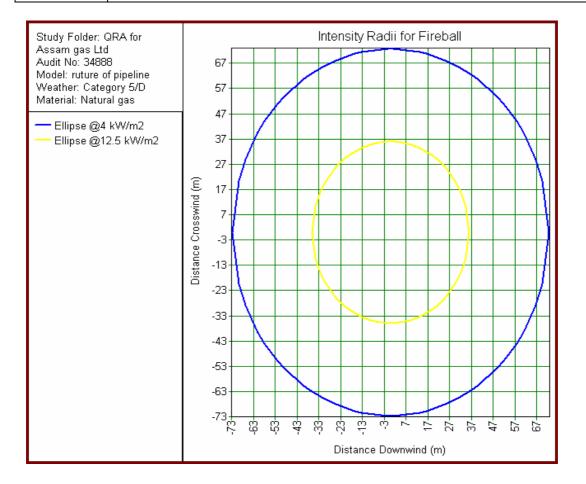
Scenario	THERMAL DA	MAGE D FIRE	ISTANC	E BY JET	MAXIMUM DISTANCE AT OVERPRESSURE LEVEL (M)			
details	RADIATION	WEAT		IEGORY	OVERPRESSURE	WEAT		GORY
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D
5 mm	4	NR	NR	NR	0.02068	NR	NR	NR
leakage in buried	12.5	NR	NR	NR	0.1379	NR	NR	NR
pipeline	37.5	NR	NR	NR	0.2068	NR	NR	NR
25 mm	4	14.92	14.9 8	15.02	0.02068	24.02	22.09	23.04
leakage in buried	12.5	11.95	12.3 3	12.17	0.1379	13.63	13.13	13.38
pipeline	37.5	NR	NR	NR	0.2068	12.81	12.42	12.61

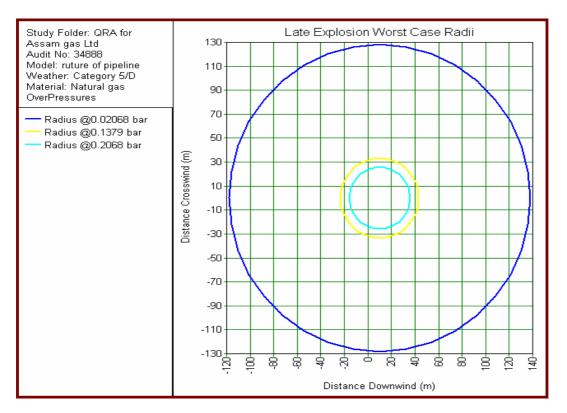
Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 91 of 160


ASSAM GAS COMPANY LTD

ASSAM GAS COMPANY LTD.

QUANTITATIVE RISK ASSESSMENT


100 mm	4	74.85	72.5 9	72.59	0.02068	154.60	154.60	154.60
leakage in buried	12.5	37.26	35.9 2	35.92	0.1379	40.03	40.03	40.03
pipeline	37.5	NR	NR	NR	0.2068	30.97	30.97	30.97



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 92 of 160

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 93 of 160

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 94 of 160

GREEN

THE GREEN PEOPLE

QUANTITATIVE RISK ASSESSMENT

REPORT NO.:-GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

CONSEQUENCE RESULTS – KUSIJAN TO DOOMDOOMA

	CONCENTRATION AT DISTANCE (M)						
Scenario details	Concentration in PPM		v	VEATHER CAT	EGORY		
			3F	7D	5D		
Pupture in buried	UFL	164806	3.42	3.73	3.59		
Rupture in buried pipeline	LFL	43559.7	6.20	8.59	7.63		
	LFL (frac)	21779.9	8.77	14.37	11.77		

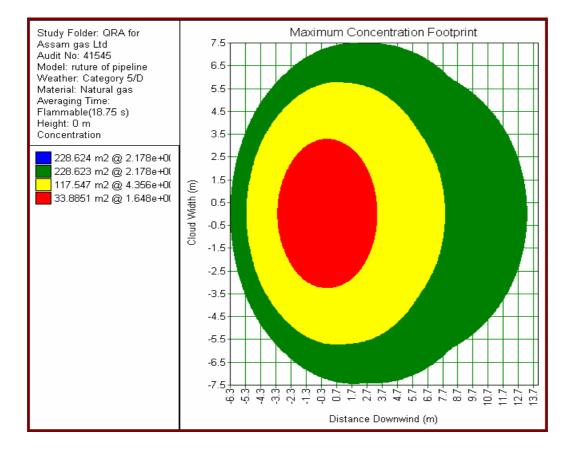
Scenario	THERMAL DAM	MAGE DIS	TANCE B	Y FIRE BALL	MAXIMUM DISTANCE AT OVERPRESSURE LEVEL (M)				
details	RADIATION	WEA	THER CA	TEGORY	OVERPRESSURE	WEAT	HER CATE	TEGORY	
	INTENSITY (KW / M2)	3F	7D			3F	7D	5D	
Rupture	4	59.64	57.92	57.92	0.02068	124.78	124.78	124.78	
in buried	12.5	29.40	28.38	28.38	0.1379	32.309	32.309	32.309	
pipeline	37.5	NR	NR	NR	0.2068	25	25	25	

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 95 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

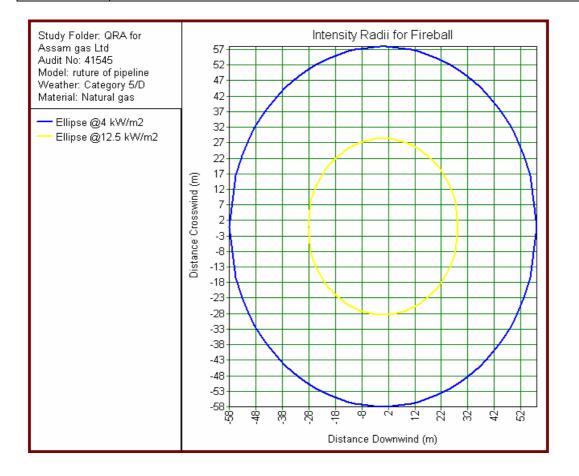
Maximum credible loss Scenario (MCLS): Leakage due to Flange failure or Hose Failure

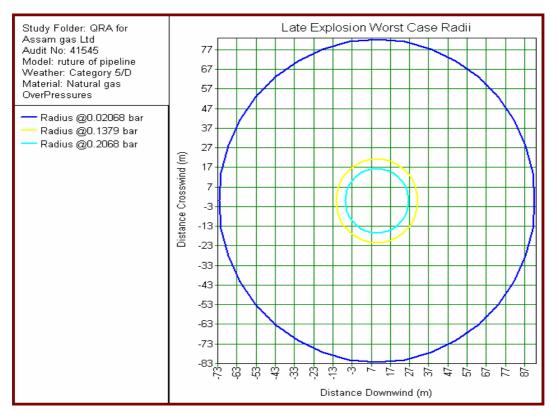
	CONCENTRATION AT DISTANCE (M)								
Scenario details	Concentrat	ion in PPM	WEATHER CATEGORY						
	Concentrat		3F	7D	5D				
E anna ha chaona in	UFL	164806	0.33	0.33	0.34				
5 mm leakage in buried pipeline	LFL	43559.7	1.48	1.34	1.39				
	LFL (frac)	21779.9	2.65	2.42	2.60				
25 mm leakage	UFL	164806	1.92	1.88	1.91				
in buried pipeline	LFL	43559.7	7.03	5.97	6.57				
	LFL (frac)	21779.9	14.32	10.58	12.04				
100 mm leakage	UFL	164806	7.02	6.70	6.89				
	LFL	43559.7	41.66	37.30	39.06				
	LFL (frac)	21779.9	94.98	96.46	93.56				


Scenario	THERMAL DAM	AGE DISTA	NCE BY	NCE BY JET FIRE			NCE AT OVERPRESSURE LEVEL (M)			
details	RADIATION	WEATH	ER CATE	GORY	OVERPRESSURE	WEATH	IER CATEG	R CATEGORY		
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D		
5 mm	4	NR	NR	NR	0.02068	NR	NR	NR		
leakage in buried	12.5	NR	NR	NR	0.1379	NR	NR	NR		
pipeline	37.5	NR	NR	NR	0.2068	NR	NR	NR		
25 mm	4	14.92	14.98	15.02	0.02068	24.02	22.09	23.04		
leakage in buried	12.5	11.95	12.33	12.17	0.1379	13.63	13.13	13.38		
pipeline	37.5	NR	NR	NR	0.2068	12.81	12.42	12.61		
100 mm	4	59.64	57.92	57.92	0.02068	124.78	124.78	124.78		
Approved By	Approved By:		Doc. No	Doc. No.: AGCL/QRA/04		Issue No.: 01				
Controlled B	y:		Rev No	o.: 00		Page 96 of	160			

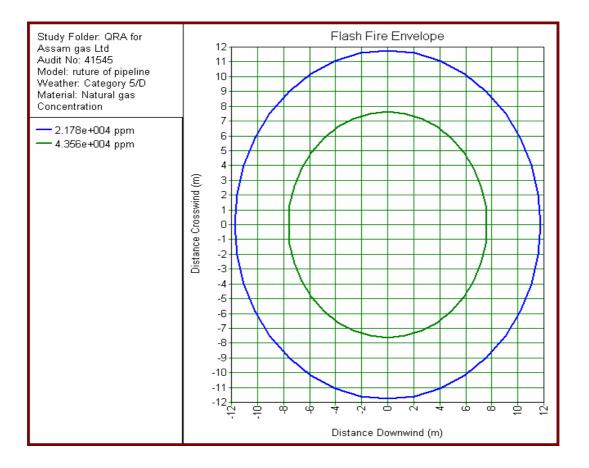
ASSAM GAS COMPANY LTD (A CONT OF ASSM UNDERTACHE)

QUANTITATIVE RISK ASSESSMENT


Scenario	THERMAL DAMAGE DISTANCE BY JET FIRE				MAXIMUM DISTANCE AT OVERPRESSURE LEVEL (M)			RE LEVEL
details	RADIATION	RADIATION WEATHER CATEGORY		OVERPRESSURE	WEATH	ER CATEG	GORY	
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D
leakage in buried	12.5	29.40	28.38	28.38	0.1379	32.31	32.31	32.31
pipeline	37.5	NR	NR	NR	0.2068	25.00	25.00	25.00



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 97 of 160



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 98 of 160

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 99 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

CONSEQUENCE RESULTS – LAKWA TO GOLAGHAT

	CONCENTRATION AT DISTANCE (M)							
Scenario details	Concentration i	n PPM	WEATHER CATEGORY					
	Concentration in TTM		3F	7D	5D			
Rupture in buried pipeline	UFL	164806	3.45	3.79	3.65			
	LFL	43559.7	6.33	8.98	7.78			
	LFL (frac)	21779.9	8.94	16.71	12.52			

Scenario	THERMAL DAM		ANCE BY F		MAXIMUM DIS	MAXIMUM DISTANCE AT OVERPRESSURE LEVEL (M) WEATHER CATEGORY			
details	INTENSITY (KW / M2)	3F	7D 5D		OVERPRESSURE (BAR)	3F	7D	5D	
Rupture in	4	56.42	54.80	54.80	0.02068	124.78	124.78	124.78	
buried	12.5	27.14	26.15	26.15	0.1379	32.31	32.31	32.31	
pipeline	37.5	NR	NR	NR	0.2068	25.00	25.00	25.00	

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 100 of 160

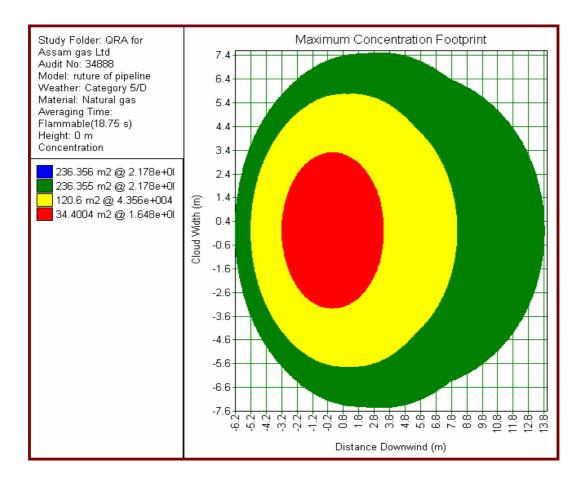
REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

Maximum credible loss Scenario (MCLS): Leakage due to Flange failure or Hose Failure

	CONCENTRATION AT DISTANCE (M)						
Scenario details	Concentrat	ion in PPM	W	WEATHER CATEGORY			
	Concentia		3F	7D	5D		
	UFL	164806	0.27	0.27	0.27		
5 mm leakage in buried pipeline	LFL	43559.7	1.27	1.20	1.24		
	LFL (frac)	21779.9	2.40	2.16	2.28		
25 mm loakago in	UFL	164806	1.53	1.56	1.60		
25 mm leakage in buried pipeline	LFL	43559.7	5.85	5.10	5.46		
	LFL (frac)	21779.9	11.34	8.34	9.46		
100 mm leakage in buried pipeline	UFL	164806	6.00	5.68	5.88		
	LFL	43559.7	32.14	29.86	30.60		
	LFL (frac)	21779.9	76.62	77.89	76.63		

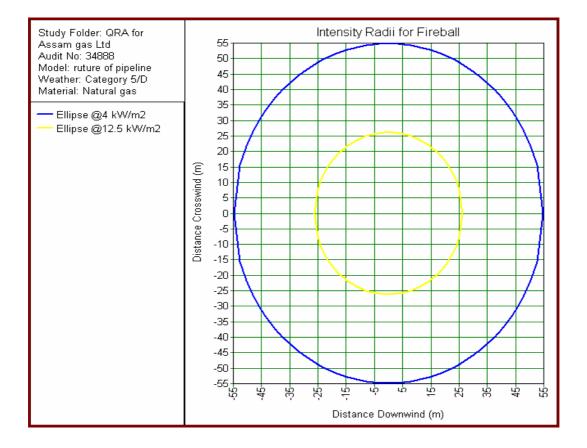
THERMAL D		MAGE D	ISTANCE I	BY JET	MAXIMUM DISTANCE AT OVERPRESSURE LEVEL (M)			LEVEL (M)
details	RADIATION WEATHER CATEGORY OVERPRESSURE	WEATHER CATEGORY						
INTENSITY (KW / M2)		3F	7D	5D	(BAR)	3F	7D	5D
5 mm	4	NR	NR	NR	0.02068	NR	NR	NR
leakage in buried	12.5	NR	NR	NR	0.1379	NR	NR	NR
pipeline	37.5	NR	NR	NR	0.2068	NR	NR	NR
25 mm	4	12.46	12.45	12.52	0.02068	NR	NR	NR
leakage in buried	12.5	9.84	10.18	10.07	0.1379	NR	NR	NR
pipeline	37.5	NR	NR	NR	0.2068	NR	NR	NR
100 mm	4	53.80	54.22	54.01	0.02068	124.78	124.78	124.78

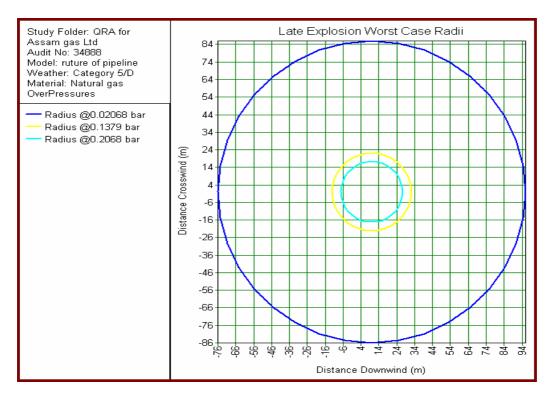
Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 101 of 160


ASSAM GAS COMPANY LT

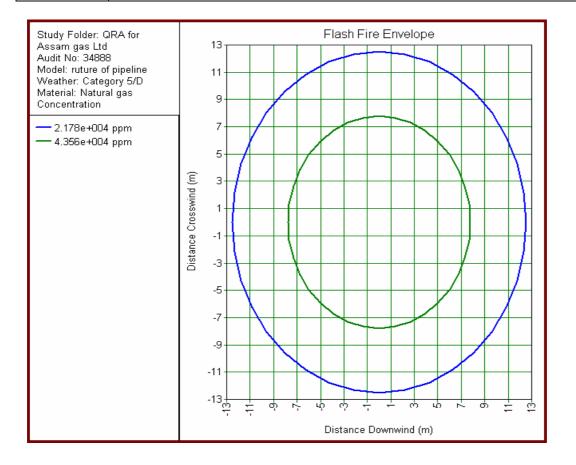
ASSAM GAS COMPANY LTD.

QUANTITATIVE RISK ASSESSMENT


leakage in buried	12.5	42.44	44.91	43.75	0.1379	32.31	32.31	32.31
pipeline	37.5	33.81	37.08	35.67	0.2068	25.00	25.00	25.00



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 102 of 160



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 103 of 160

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 104 of 160

GREEN GROUP THE GREEN PEOPLE

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

CONSEQUENCE RESULTS – LAKWA TO NAMRUP

	CONCENTRATION AT DISTANCE (M)						
Scenario details	Concentrat	ion in PPM	WEATHER CATEGORY 3F 7D 5D				
	Concernia						
Rupture in buried pipeline	UFL	164806	3.88	4.26	4.13		
	LFL	43559.7	7.18	10.94	8.94		
	LFL (frac)	21779.9	10.08	20.41	15.38		

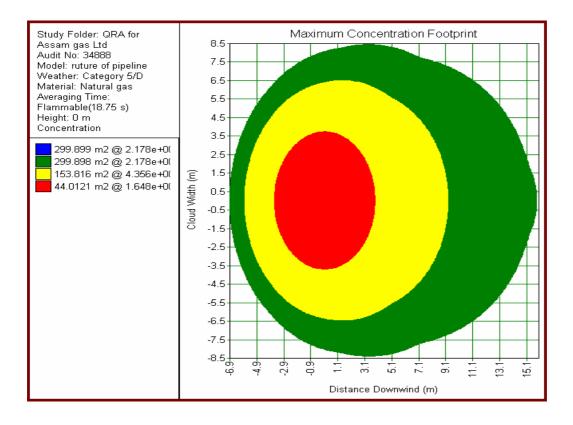
Scenario	THERMAL DAMAGE DISTANCE BY FIRE BALL				MAXIMUM DISTANCE AT OVERPRESSURE LEVEL (M)			
details	RADIATION	WEATHER CATEGORY			OVERPRESSURE	WEATHER CATEGORY		
	INTENSITY (kW / m2)	3F	7D	5D	(BAR)	3F	7D	5D
Rupture in buried pipeline	4	61.66	59.84	59.84	0.02068	138.67	138.67	138.67
	12.5	29.49	28.37	28.37	0.1379	35.91	35.91	35.91
	37.5	61.66	59.84	59.84	0.2068	27.78	27.78	27.78

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 105 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

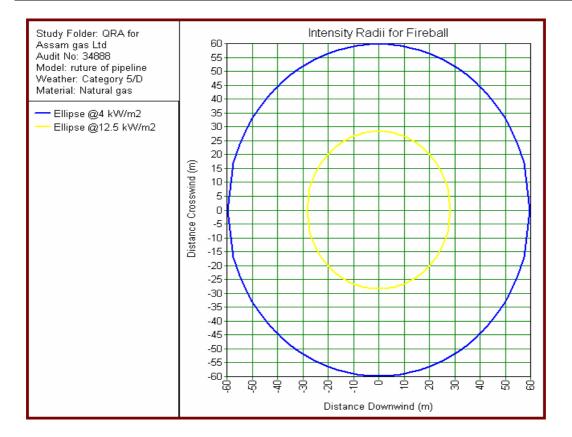
Maximum credible loss Scenario (MCLS): Leakage due to Flange failure or Hose Failure

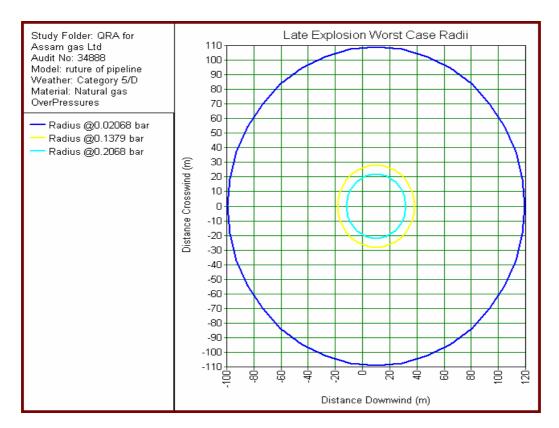
	CONCENTRATION AT DISTANCE (M)							
Scenario details	Concentrat	ion in PPM	WE	WEATHER CATEGORY				
	Concentrat		3F	7D	5D			
E anna ha chaona in	UFL	164806	0.24	0.24	0.24			
5 mm leakage in buried pipeline	LFL	43559.7	1.20	1.14	1.18			
	LFL (frac)	21779.9	2.29	2.04	2.17			
25 mm leakage	UFL	164806	1.42	1.42	1.46			
in buried pipeline	LFL	43559.7	5.58	4.93	5.11			
	LFL (frac)	21779.9	10.22	7.70	8.70			
100 mm leakage in buried pipeline	UFL	164806	5.54	5.22	5.42			
	LFL	43559.7	29.50	27.11	27.96			
	LFL (frac)	21779.9	71.21	72.88	70.39			


Scenario	THERMAL DAMAGE DISTANCE BY JET FIRE				MAXIMUM DISTANCE AT OVERPRESSURE LEVEL (M)			
details	RADIATION	WEATHER CATEGORY			OVERPRESSURE	WEAT		GORY
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D
5 mm	4	NR	NR	NR	0.02068	NR	NR	NR
leakage in buried	12.5	NR	NR	NR	0.1379	NR	NR	NR
pipeline	37.5	NR	NR	NR	0.2068	NR	NR	NR
25 mm	4	11.53	11.49	11.57	0.02068	NR	NR	NR
leakage in buried	12.5	9.11	9.36	9.30	0.1379	NR	NR	NR
pipeline	37.5	NR	NR	NR	0.2068	NR	NR	NR
100 mm	4	61.663	59.842	59.842	0.02068	138.67	138.67	138.67

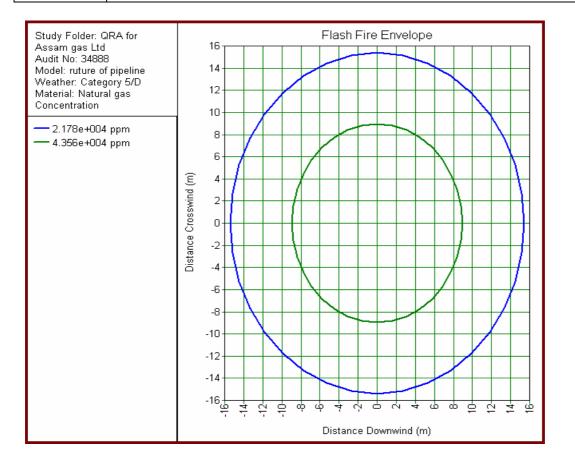
Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 106 of 160

QUANTITATIVE RISK ASSESSMENT


leakage in buried	12.5	29.49	28.374	28.374	0.1379	35.91	35.91	35.91
pipeline	37.5	61.663	59.842	59.842	0.2068	27.78	27.78	27.78



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 107 of 160



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 108 of 160

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 109 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

CONSEQUENCE RESULTS – LPG_SEPERATION STATION TO AGCL- DULIAJAN

Worst Case Scenario (WCS):-100% Catastrophic Rupture

	CONCENTRATION AT DISTANCE (M)						
Scenario details	Concentratior	WEA	ATHER CATEGORY				
	Concernitation		3F	7D	5D		
Pupture in buried	UFL	164806	4.98	5.40	5.26		
Rupture in buried pipeline	LFL	43559.7	9.13	13.16	11.01		
	LFL (frac)	21779.9	12.68	23.99	18.41		

Scenario	THERMAL D	AMAGE D BALL		BY FIRE	E MAXIMUM DISTANCE AT OVERPRES		VERPRESS	URE LEVEL
details	RADIATION	WEATHER CATEGORY		OVERPRESSURE	WEATHER CATEGORY			
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D
Rupture	4	85.608	82.948	82.948	0.02068	175.55	175.55	175.55
in buried	12.5	42.847	41.28	41.28	0.1379	45.45	45.45	45.45
pipeline	37.5	NR	NR	NR	0.2068	35.17	35.17	35.17

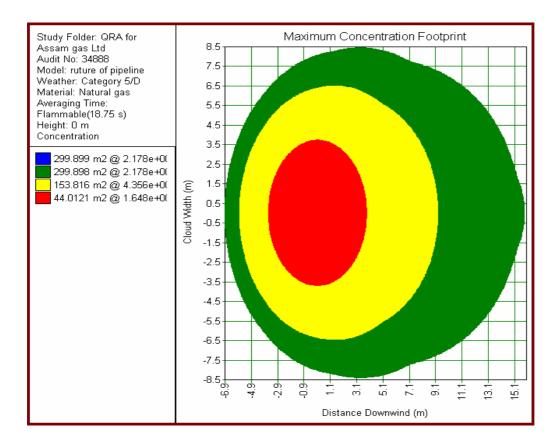
Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 110 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

Maximum credible loss Scenario (MCLS): Leakage due to Flange failure or Hose Failure

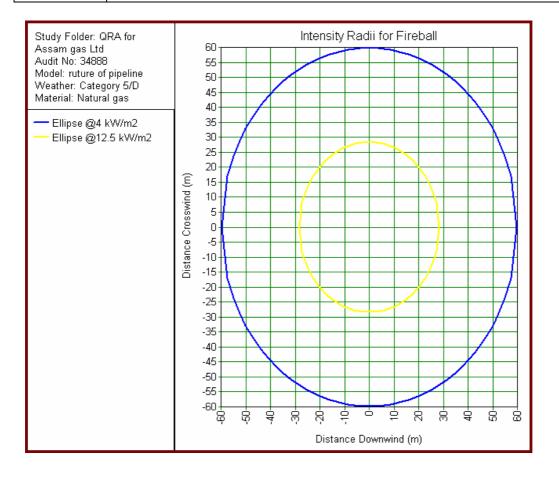
	CONCENTRATION AT DISTANCE (M)							
Scenario details	Concentrat	tion in PPM	W	WEATHER CATEGORY				
			3F	7D	5D			
·	UFL	164806	0.33	0.33	0.34			
5 mm leakage in buried pipeline	LFL	43559.7	1.48	1.34	1.39			
	LFL (frac)	21779.9	2.65	2.42	2.60			
	UFL	164806	1.92	1.88	1.91			
25 mm leakage in buried pipeline	LFL	43559.7	7.03	5.97	6.57			
	LFL (frac)	21779.9	14.32	10.58	12.04			
100 mm leakage in buried pipeline	UFL	164806	7.02	6.70	6.89			
	LFL	43559.7	41.66	37.30	39.06			
	LFL (frac)	21779.9	94.98	96.46	93.56			

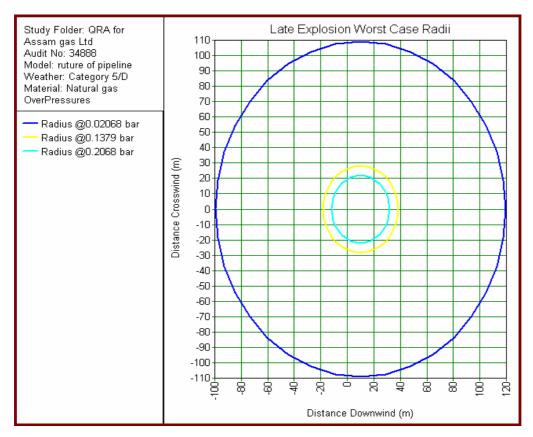
Scenario	THERMAL DAMAGE DISTANCE BY JET FIRE				MAXIMUM DISTANCE AT OVERPRESSUR LEVEL (M)			
details	RADIATION	WEATHER CATEGORY			OVERPRESSURE	WEAT		GORY
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D
5 mm	4	NR	NR	NR	0.02068	NR	NR	NR
leakage in buried	12.5	NR	NR	NR	0.1379	NR	NR	NR
pipeline	37.5	NR	NR	NR	0.2068	NR	NR	NR
25 mm	4	14.92	14.98	15.02	0.02068	24.02	22.09	23.04
leakage in buried	12.5	11.95	12.33	12.17	0.1379	13.63	13.13	13.38
pipeline	37.5	14.92	14.98	15.02	0.2068	12.81	12.42	12.61
100 mm	4	63.19	63.54	63.31	0.02068	175.55	175.55	175.55


Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 111 of 160

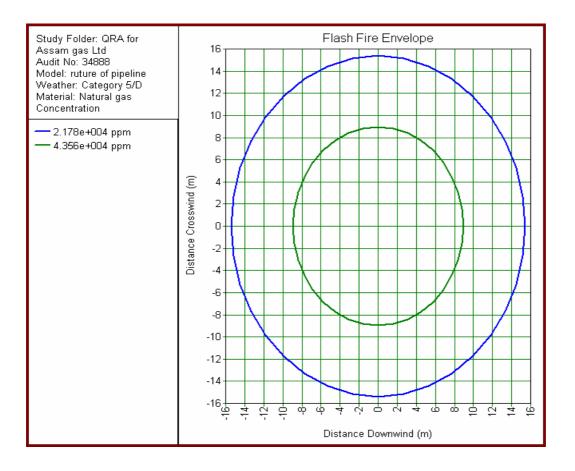
ASSAM GAS COMPANY L

QUANTITATIVE RISK ASSESSMENT


leakage in buried	12.5	49.50	52.35	50.98	0.1379	45.45	45.45	45.45
pipeline	37.5	39.19	43.32	41.32	0.2068	35.17	35.17	35.17



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 112 of 160



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 113 of 160

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 114 of 160

QUANTITATIVE RISK ASSESSMENT

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

CONSEQUENCE RESULTS – DULIAJAN TO AGCL COMPRESSOR AREA

Worst Case Scenario (WCS):-100% Catastrophic Rupture

	CONCENTRATION AT DISTANCE (M)							
Scenario details	Concentration i	n PPM	WEATHER CATEGORY					
			3F	7D	5D			
Rupture in buried pipeline	UFL	164806	3.83	4.19	4.06			
	LFL	43559.7	7.03	9.65	8.48			
	LFL (frac)	21779.9	9.89	17.70	13.44			

Scenario	THERMAL DAMAGE DISTANCE BY FIRE BALL				MAXIMUM DISTANCE AT OVERPRESSURE LE (M)			
details	RADIATION	WEAT	HER CATE	GORY	OVERPRESSURE	WEATHER CATEGORY		
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D
Rupture in	4	66.71	64.74	64.74	0.02068	138.67	138.67	138.67
buried	12.5	33.05	31.88	31.88	0.1379	35.91	35.91	35.91
pipeline	37.5	NR	NR	NR	0.2068	27.78	27.78	27.78

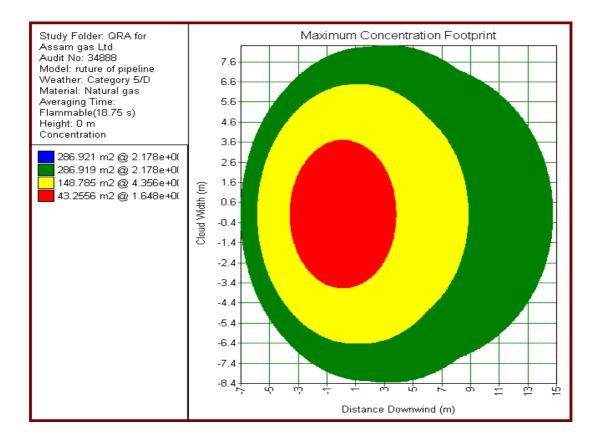
Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 115 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

Maximum credible loss Scenario (MCLS): Leakage due to Flange failure or Hose Failure

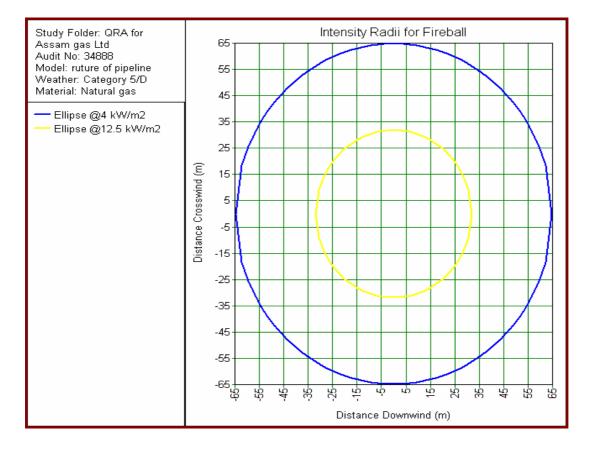
	CONCENTRATION AT DISTANCE (M)							
Scenario details	Concentrat	ion in PPM	WEATHER CATEGORY					
	Concernitor		3F	7D	5D			
E anna ha chaona in	UFL	164806	0.33	0.33	0.34			
5 mm leakage in buried pipeline	LFL	43559.7	1.48	1.34	1.39			
	LFL (frac)	21779.9	2.65	2.42	2.60			
25 mm leakage	UFL	164806	1.92	1.88	1.91			
in buried pipeline	LFL	43559.7	7.03	5.97	6.57			
	LFL (frac)	21779.9	14.32	10.58	12.04			
100 mm leakage in buried pipeline	UFL	164806	1.00	1.00	1.00			
	LFL	43559.7	1.34	1.11	1.15			
	LFL (frac)	21779.9	4.05	2.05	2.19			

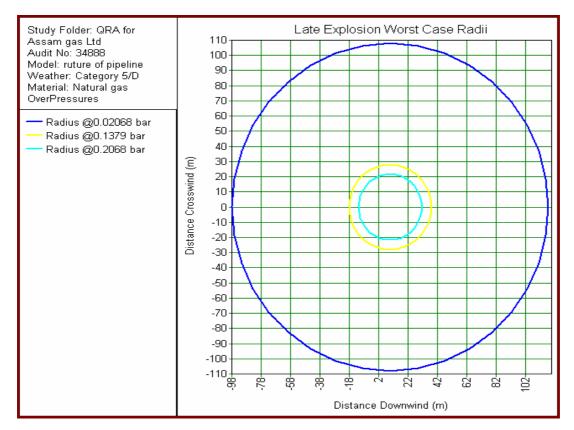
Scenario	THERMAL DAM	AGE DIST	JET FIRE	MAXIMUM DISTANCE AT OVERPRESSURE LEV (M)				
details	RADIATION	WEATHER CATEGORY			OVERPRESSURE	WEA	THER CAT	EGORY
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D
5 mm	4	NR	NR	NR	0.02068	NR	NR	NR
leakage in buried	12.5	NR	NR	NR	0.1379	NR	NR	NR
pipeline	37.5	NR	NR	NR	0.2068	NR	NR	NR
25 mm	4	14.92	14.98	15.02	0.02068	24.02	22.09	23.04
leakage in buried	12.5	11.95	12.33	12.17	0.1379	13.63	13.13	13.38
pipeline	37.5	NR	NR	NR	0.2068	12.81	12.42	12.61
100 mm	4	63.19	63.54	63.31	0.02068	138.67	138.67	138.67


Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 116 of 160

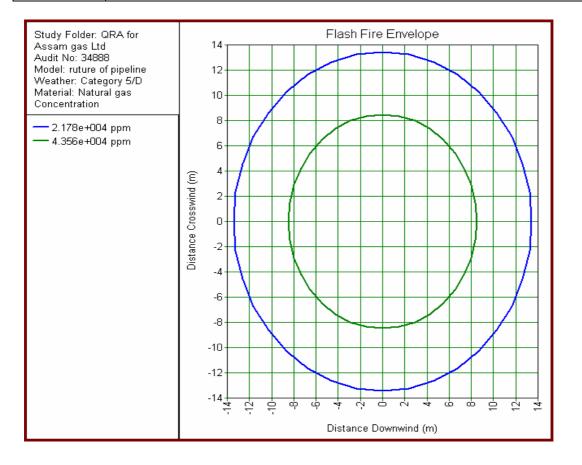
ASSAM GAS COMPANY LTD

QUANTITATIVE RISK ASSESSMENT


leakage in buried	12.5	49.50	52.35	50.98	0.1379	35.91	35.91	35.91
pipeline	37.5	39.19	43.32	41.32	0.2068	27.78	27.78	27.78



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 117 of 160



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 118 of 160

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 119 of 160

QUANTITATIVE RISK ASSESSMENT

GREEN GROUD THE GREEN PEOPLE

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

CONSEQUENCE RESULTS – LPG, DULAJAN TO BVFCL NAMRUP

Worst Case Scenario (WCS):-100% Catastrophic Rupture

		CONCENTRA	TION AT DISTA	ON AT DISTANCE (M)		
Scenario details	Concentration in PPM		N N	GORY		
	Concernitation	3F	7D	5D		
Rupture in buried	UFL	164806	3.83	4.19	4.06	
pipeline	LFL	43559.7	7.03	9.65	8.48	
	LFL (frac)	21779.9	9.89	17.70	13.44	

Scenario	THERMAL D	THERMAL DAMAGE DISTANCE BY FIRE BALL				MAXIMUM DISTANCE AT OVERPRESSURE LEVEL (M)			
details	RADIATION	WEAT	THER CATEO	GORY	OVERPRESSURE	WEA	THER CAT	EGORY	
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D	
Rupture	4	66.708	64.743	64.743	0.02068	138.67	138.67	138.67	
in buried	12.5	33.046	31.881	31.881	0.1379	35.91	35.91	35.91	
pipeline	37.5	NR	NR	NR	0.2068	27.78	27.78	27.78	

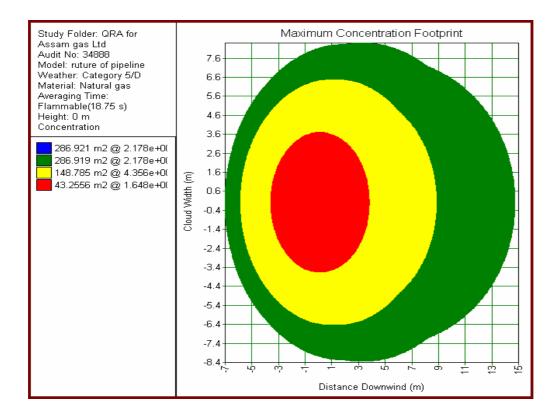
Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 120 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

Maximum credible loss Scenario (MCLS): Leakage due to Flange failure or Hose Failure

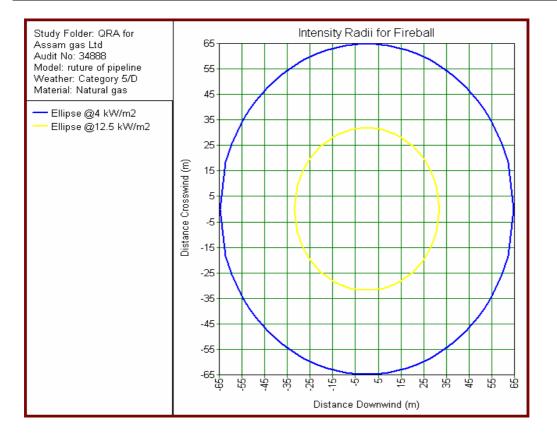
		CONCENTRATION AT DISTANCE (M)						
Scenario details	Concentrat	ion in PPM	WE	WEATHER CATEGORY				
	Concentral		3F	7D	5D			
	UFL	164806	0.33	0.33	0.34			
5 mm leakage in buried pipeline	LFL	43559.7	1.48	1.34	1.39			
	LFL (frac)	21779.9	2.65	2.42	2.60			
25 mm leakage in buried pipeline	UFL	164806	1.92	1.88	1.91			
	LFL	43559.7	7.03	5.97	6.57			
	LFL (frac)	21779.9	14.32	10.58	12.04			
100 mm leakage in buried pipeline	UFL	164806	7.02	6.70	6.89			
	LFL	43559.7	41.66	37.30	39.06			
	LFL (frac)	21779.9	94.98	96.46	93.56			

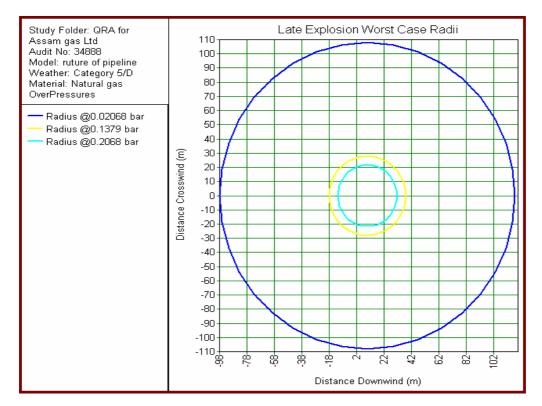
Scenario	THERMAL DAM	IERMAL DAMAGE DISTANCE BY JET FIRE				MAXIMUM DISTANCE AT OVERPRESSURE LEVEL (M)			
details	RADIATION	WEAT		GORY	OVERPRESSURE	WEATHER CATEGORY			
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D	
5 mm	4	NR	NR	NR	0.02068	NR	NR	NR	
leakage in buried	12.5	NR	NR	NR	0.1379	NR	NR	NR	
pipeline	37.5	NR	NR	NR	0.2068	NR	NR	NR	
25 mm	4	14.92	14.982	15.023	0.02068	24.02	22.09	23.04	
leakage in buried	12.5	11.951	12.329	12.171	0.1379	13.63	13.13	13.38	
pipeline	37.5	NR	NR	NR	0.2068	12.81	12.42	12.61	
100 mm	4	63.189	63.543	63.313	0.02068	138.67	138.67	138.67	


Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 121 of 160

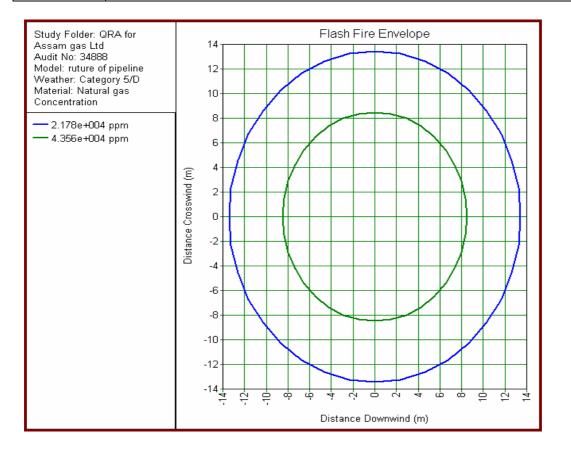
ASSAM GAS COMPANY LI	M

QUANTITATIVE RISK ASSESSMENT


leakage in buried	12.5	49.503	52.354	50.984	0.1379	35.906	35.906	35.906
pipeline	37.5	39.189	43.32	41.317	0.2068	27.783	27.783	27.783



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 122 of 160



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 123 of 160

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 124 of 160

GREEN

THE GREEN PEOPLE

QUANTITATIVE RISK ASSESSMENT

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

CONSEQUENCE RESULTS – TENGAKHAT TO TINSUKIA

Worst Case Scenario (WCS):-100% Catastrophic Rupture

	CONCENTRATION AT DISTANCE (M)						
Scenario details	Concentration in PPM		N	EATHER CATEG	GORY		
			3F	7D	5D		
Rupture in buried	UFL	164806	2.96	3.19	3.10		
pipeline	LFL	43559.7	5.36	7.57	6.61		
	LFL (frac)	21779.9	7.43	12.99	10.43		

Scenario	THERMAL DAMAGE DISTANCE BY FIRE BALL RADIATION WEATHER CATEGORY				MAXIMUM DIS	LEVEL (M))	
details	RADIATION	WEAH	HER CATE	JORY	OVERPRESSURE	WEAT	HER CATE	GORY
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D
Rupture in	4	51.659	50.217	50.217	0.02068	109.01	109.01	109.01
buried	12.5	25.303	24.441	24.441	0.1379	28.22	28.22	28.22
pipeline	37.5	NR	NR	NR	0.2068	21.84	21.84	21.84

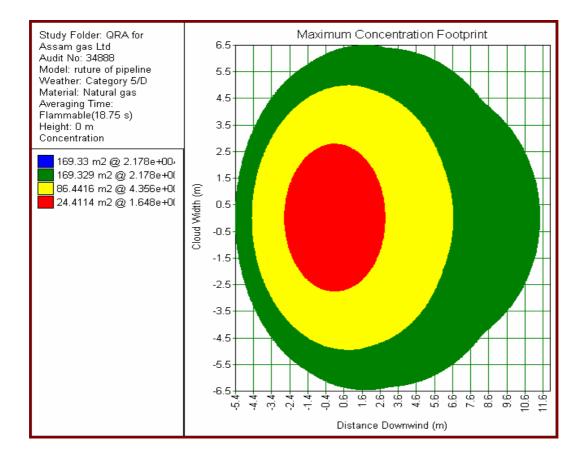
Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 125 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

Maximum credible loss Scenario (MCLS): Leakage due to Flange failure or Hose Failure

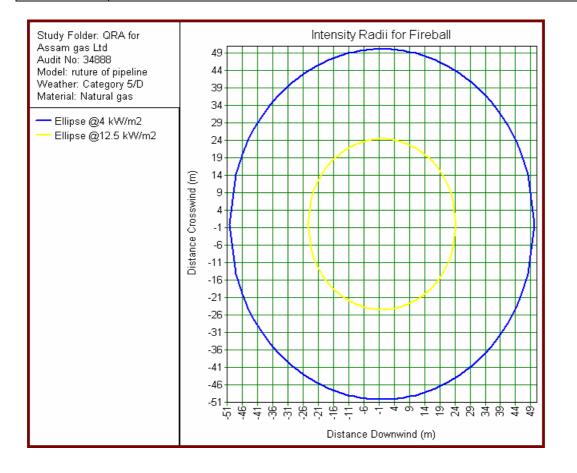
		CONCEN	RATION AT DIST	ANCE (M)		
Scenario details	Concentrat	ion in PPM	WEATHER CATEGORY			
			3F	7D	5D	
E anna la channa la	UFL	164806	0.33	0.33	0.34	
5 mm leakage in buried pipeline	LFL	43559.7	1.48	1.34	1.39	
	LFL (frac)	21779.9	2.65	2.42	2.60	
25 mm leakage in buried pipeline	UFL	164806	1.92	1.88	1.91	
	LFL	43559.7	7.03	5.97	6.57	
	LFL (frac)	21779.9	14.32	10.58	12.04	
100 mm leakage	UFL	164806	7.02	6.70	6.89	
	LFL	43559.7	41.66	37.30	39.06	
	LFL (frac)	21779.9	98.98	96.46	93.56	

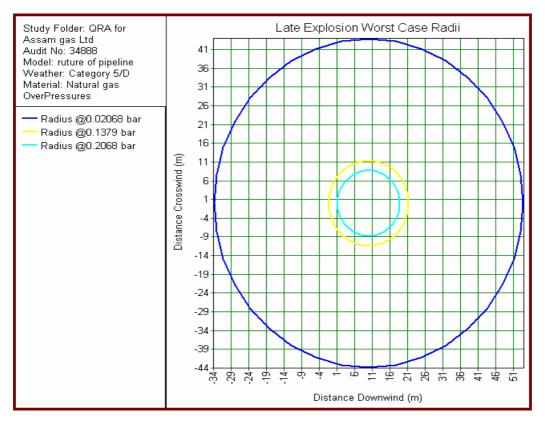
Scenario	THERMAL DAMAGE DISTANCE BY JET FIRE				MAXIMUM DIST	ANCE AT LEVEL (M)		SSURE
details	RADIATION	WEAT	HER CATE	GORY	OVERPRESSURE	WEAT	HER CATE	GORY
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D
5 mm	4	NR	NR	NR	0.02068	NR	NR	NR
leakage in buried	12.5	NR	NR	NR	0.1379	NR	NR	NR
pipeline	37.5	NR	NR	NR	0.2068	NR	NR	NR
25 mm	4	14.92	14.98	15.02	0.02068	24.02	22.09	23.04
leakage in buried	12.5	11.95	12.33	12.17	0.1379	13.63	13.13	13.38
pipeline	37.5	NR	NR	NR	0.2068	12.81	12.42	12.61
100 mm	4	63.19	63.54	63.31	0.02068	109.01	109.01	109.01


Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 126 of 160

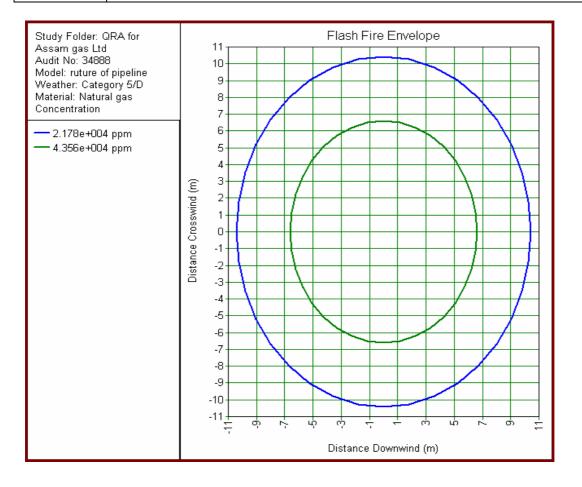
AC	GAS COMPANY LT
AS	GAS COMPANY LT
	(A GOVT OF ASSAM UNDERTAKE

QUANTITATIVE RISK ASSESSMENT


leakage in buried	12.5	49.50	52.35	50.98	0.1379	28.22	28.22	28.22
pipeline	37.5	39.19	43.32	41.32	0.2068	21.84	21.84	21.84



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 127 of 160



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01		
Controlled By:	Rev No.: 00	Page 128 of 160		

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 129 of 160

GREEN

THE GREEN PEOPLE

QUANTITATIVE RISK ASSESSMENT

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

CONSEQUENCE RESULTS – TENSUKIA TO DOOMDOOMA

Worst Case Scenario (WCS):-100% Catastrophic Rupture

	CONCENTRATION AT DISTANCE (M)								
Scenario details	Concentration i	WEATHER CATEGORY							
Concentration in r			3F	7D	5D				
Pupture in buried	UFL	164806	2.65	2.83	2.78				
Rupture in buried pipeline	LFL	43559.7	4.81	6.83	5.88				
	LFL (frac)	21779.9	6.57	11.85	9.47				

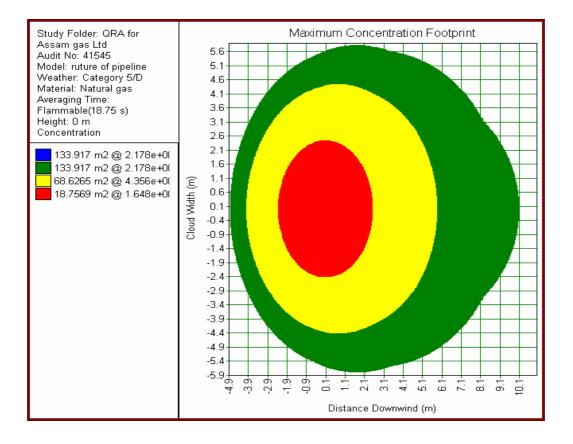
Scenario	THERMAL DA	DAMAGE DISTANCE BY FIRE BALL			MAXIMUM DISTANCE AT OVERPRESSURE LEVEL (M)			
details	RADIATION	WEAT	HER CATE	GORY	OVERPRESSURE	WEATHER CATEGORY		
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D
Rupture	4	46.32	45.05	45.05	0.02068	98.39	98.3878	98.39
in buried	12.5	22.57	21.81	21.81	0.1379	25.48	25.48	25.48
pipeline	37.5	NR	NR	NR	0.2068	19.71	19.71	19.71

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 130 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

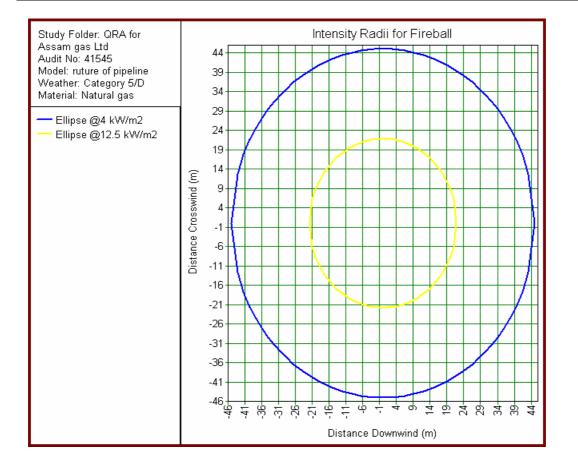
Maximum credible loss Scenario (MCLS): Leakage due to Flange failure or Hose Failure

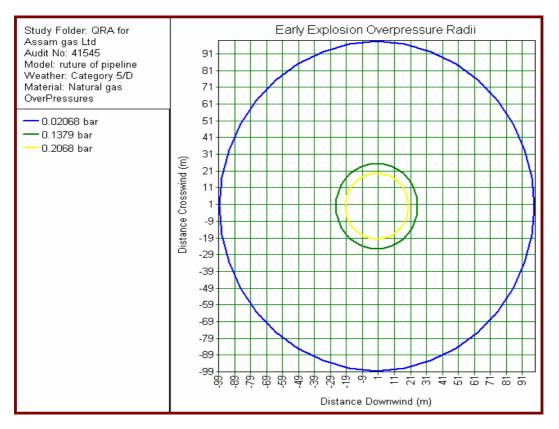
	CONCENTRATION AT DISTANCE (M)									
Scenario details	Concentrat	ion in PPM	WEATHER CATEGORY							
	Concernita		3F	7D	5D					
· ·	UFL	164806	0.33	0.33	0.34					
5 mm leakage in buried pipeline	LFL	43559.7	1.48	1.34	1.39					
	LFL (frac)	21779.9	2.65	2.42	2.60					
25	UFL	164806	1.92	1.88	1.91					
25 mm leakage in buried pipeline	LFL	43559.7	7.03	5.97	6.57					
	LFL (frac)	21779.9	14.32	10.58	12.04					
100 mm leakage in buried pipeline	UFL	164806	7.02	6.70	6.89					
	LFL	43559.7	41.66	37.30	39.06					
	LFL (frac)	21779.9	90.82	96.46	93.56					


Scenario	THERMAL DAMAGE DISTANCE BY JET FIRE			MAXIMUM DISTA	MAXIMUM DISTANCE AT OVERPRESSURE LEVEL (M)			
details	RADIATION	WEAT		GORY	OVERPRESSURE	WEATHER CATEGORY		
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D
5 mm	4	NR	NR	NR	0.02068	NR	NR	NR
leakage in buried	12.5	NR	NR	NR	0.1379	NR	NR	NR
pipeline	37.5	NR	NR	NR	0.2068	NR	NR	NR
25 mm	4	14.92	14.98	15.02	0.02068	24.02	22.09	23.04
leakage in buried	12.5	11.95	12.33	12.17	0.1379	13.63	13.13	13.38
pipeline	37.5	NR	NR	NR	0.2068	12.81	12.42	12.61
100 mm	4	63.19	63.54	63.31	0.02068	98.39	98.39	98.39
Approved By	Approved By: Doc. No.:			o.: AGCL/C	QRA/04 Issue No.: 01			
Controlled By: Rev No.: 00				Page 131 of 160				

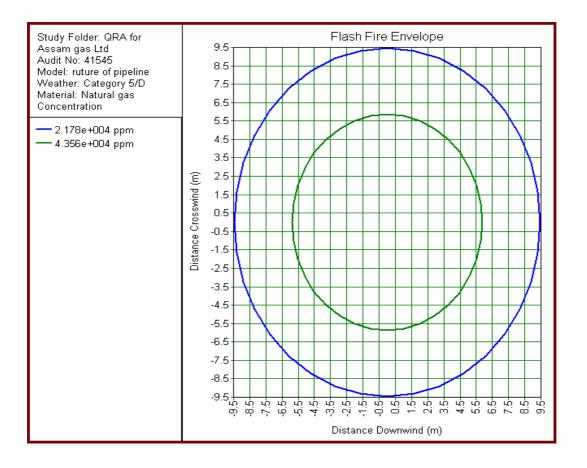
ASSAM GAS COMPANY LTD (A CONT OF ASSM UNDERTACING) ASSAM GAS COMPANY LTD.

QUANTITATIVE RISK ASSESSMENT


Scenario	THERMAL DAM		ANCE BY	JET FIRE	MAXIMUM DISTANCE AT OVERPRESSURE LEVEL (M)			
details	RADIATION WEATHER CATEGORY		OVERPRESSURE	WEATHER CATEGORY				
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D
leakage in buried	12.5	49.50	52.35	50.98	0.1379	25.48	25.48	25.48
pipeline	37.5	39.19	43.32	41.32	0.2068	19.71	19.71	19.71



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 132 of 160



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 133 of 160

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 134 of 160

GREEN

THE GREEN PEOPLE

QUANTITATIVE RISK ASSESSMENT

REPORT NO.:-GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

CONSEQUENCE RESULTS – URIAMGHAT TO GOLAGHAT

Worst Case Scenario (WCS):-100% Catastrophic Rupture

		CONCENTRA	TION AT DISTANC	E (M)	
Scenario details	Concentration in PPM		WEA	THER CATEGO	RY
	Concentration		3F	7D	5D
Rupture in buried	UFL	164806	2.40	2.65	2.52
pipeline	LFL	43559.7	4.32	6.67	5.76
	LFL (frac)	21779.9	6.25	12.87	9.26

Scenario	THERMAL D	THERMAL DAMAGE DISTANCE BY FIRE BALL			MAXIMUM DISTANCE AT OVERPRESSURE			
details	RADIATION	WEA	THER CATEO	GORY	OVERPRESSURE	WEAT	HER CAT	EGORY
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D
Rupture	4	35.79	34.83	34.83	0.02068	88.18	88.18	88.18
in buried	12.5	16.02	15.39	15.39	0.1379	22.83	22.83	22.83
pipeline	37.5	NR	NR	NR	0.2068	17.67	17.67	17.67

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 135 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

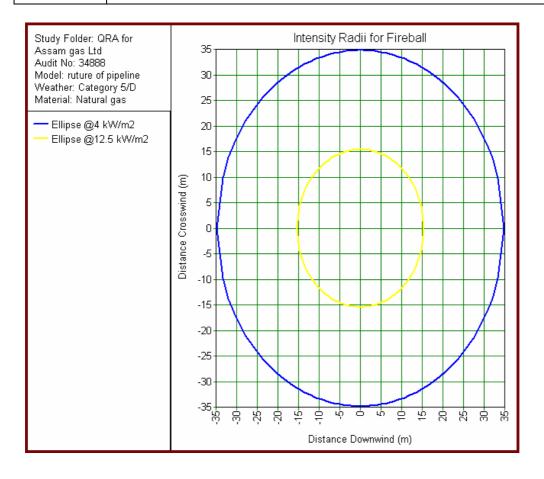
Maximum credible loss Scenario (MCLS): Leakage due to Flange failure or Hose Failure

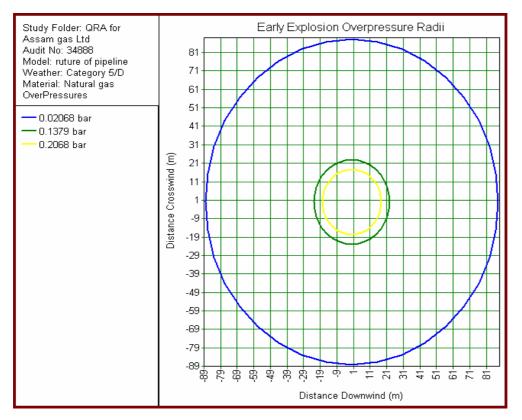
	CONCENTRATION AT DISTANCE (M)							
Scenario details	Concentrat	ion in PPM	WEATHER CATEGORY					
	Concernitor		3F	7D	5D			
	UFL	164806	0.20	0.20	0.20			
5 mm leakage in buried pipeline	LFL	43559.7	1.03	0.96	1.00			
	LFL (frac)	21779.9	1.97	1.71	1.85			
25 mm leakage in	UFL	164806	1.21	1.20	1.21			
buried pipeline	LFL	43559.7	4.84	4.45	4.65			
	LFL (frac)	21779.9	8.30	6.59	7.25			
100 mm leakage in buried pipeline	UFL	164806	4.77	4.63	4.72			
	LFL	43559.7	22.91	20.17	21.40			
	LFL (frac)	21779.9	57.79	55.97	56.38			

Scenario	THERMAL DAM		IANCE BY	JET FIRE	MAXIMUM DISTAN	MAXIMUM DISTANCE AT OVERPRESSURE LEVEL (M)			
details	RADIATION	WEAT	HER CATE	GORY	OVERPRESSURE	WEA	THER CAT	EGORY	
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D	
5 mm	4	NR	NR	NR	0.02068	NR	NR	NR	
leakage in buried	12.5	NR	NR	NR	0.1379	NR	NR	NR	
pipeline	37.5	NR	NR	NR	0.2068	NR	NR	NR	
25 mm	4	9.4336	9.2945	9.4225	0.02068	NR	NR	NR	
leakage in buried	12.5	7.3295	7.3295	7.3152	0.1379	NR	NR	NR	
pipeline	37.5	NR	NR	NR	0.2068	NR	NR	NR	
Approved	By:		Doc.	No.: AGCL	/QRA/04	Issue	No.: 01		
Controlled	By:		Rev	No.: 00		Page 1	36 of 160		

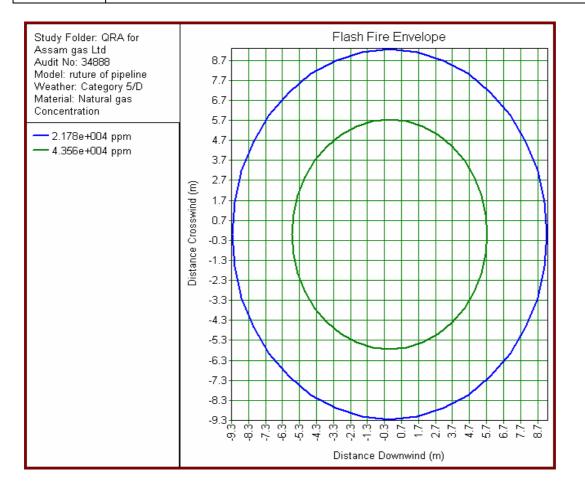
ASSAM GAS COMPANY LTD (A CONT OF ASSM UNDERTACING) ASSAM GAS COMPANY LTD.

QUANTITATIVE RISK ASSESSMENT


Scenario	THERMAL DAMAGE DISTANCE BY JET FIRE			RE MAXIMUM DISTANCE AT OVERPRES			URE LEVEL	
details	RADIATION	WEAT	HER CATE	GORY	OVERPRESSURE	WEA	THER CAT	EGORY
	INTENSITY (KW / M2)	3F	7D	5D	(BAR)	3F	7D	5D
100 mm	4	42.094	42.521	42.354	0.02068	88.18	88.18	88.18
leakage in buried	12.5	33.54	35.488	34.603	0.1379	22.83	22.83	22.83
pipeline	37.5	26.967	29.746	28.459	0.2068	17.67	17.67	17.67



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 137 of 160



Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 138 of 160

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 139 of 160

QUANTITATIVE RISK ASSESSMENT

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

Consequence analysis is carried out with the help of PHAST software. Following charts gives the brief idea about the results given by the

Assam gas has HSE Design Criteria which presents the safeguards that are identified to mitigate the risks. These safeguards comprise of appropriate layout considerations, emergency shutdown system, , fire & gas detection, and active & passive fire protection requirements based on International codes and standards. These existing safeguards are given appropriate credit within the QRA to determine the residual risk on failure of these safeguards.

The conclusions of the consequence study are as follows:

Catastrophic rupture and leak will generate heat radiation as well as overpressure effect. The heat radiation with 37.5 kW/m2 intensity will travel upto the distance of 60 m and 200 m respectively during Leak and catastrophic rupture.

However overpressure effect in case of catastrophic rupture and leakage at 0.2068 bars will travel up to the distance of 300 m and 160 m respectively.

Following chart summarized the results of heat radiation and overpressure effect

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 140 of 160

QUANTITATIVE RISK ASSESSMENT

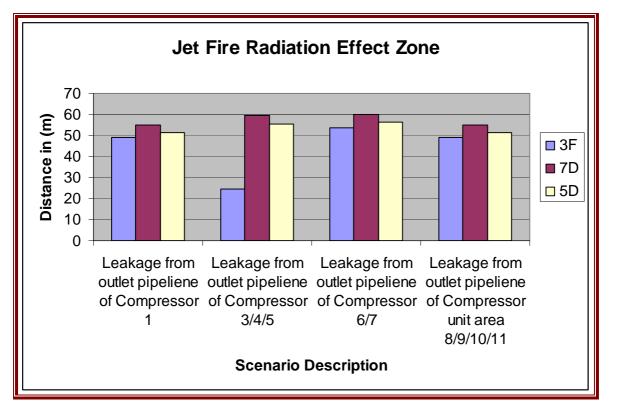


Figure 8 Jet fire radiation Effect from Compressor unit in case of leakage

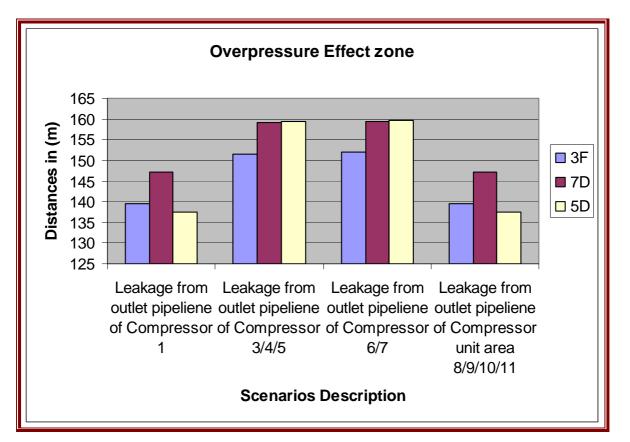


Figure 9 Overpressure damage distances in case of leakage

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 141 of 160

QUANTITATIVE RISK ASSESSMENT

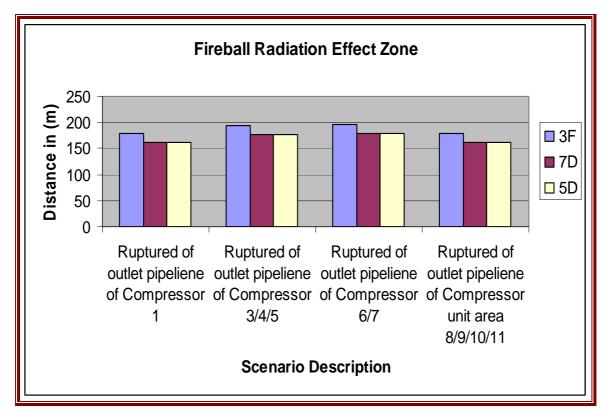


Figure 10 Fireball radiation effect in case of catastrophic rupture

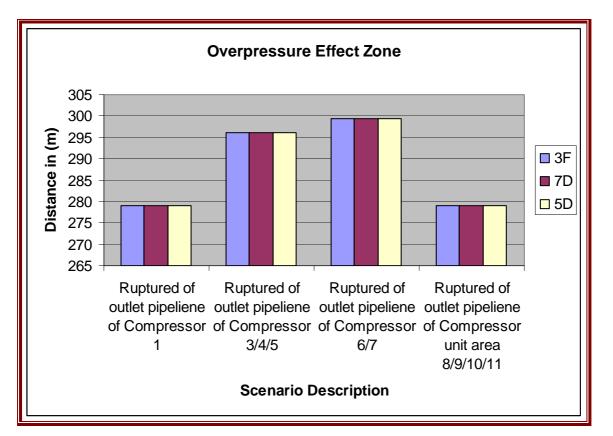


Figure 11 Overpressure damage distance in case of catastrophic rupture

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 142 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

All pipelines are underground. The only way of finding exposed pipeline at booster station only. At the time of leakage or catastrophic rupture heat radiation traveled a very few distance from the leakage point. As per the consequence results it is found that heat radiation effect as well as overpressure effect seems very low

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 143 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

GENRAL INFORMATION

Basics of natural gas

Natural gas is an excellent source of energy for your home or business. It is economical, reliable and safe for the environment, but like all sources of energy, it should be used wisely. Always remember safety first when operating natural gas appliances of any kind.

Natural gas is a nontoxic, colorless, and odorless fuel that is lighter than air. This lighter-thanair quality is an important safety factor. If a leak occurs, natural gas will mix readily with air and rise into the atmosphere. As a safety measure the natural gas that is piped to your home or business has a harmless odor similar to rotten eggs so that you can easily detect even the smallest amount of gas that might escape.

From design and construction to operations and maintenance, natural gas utilities like ours set high standards to keep natural gas pipelines incident-free.

Detection of natural gas

Natural gas is one of the safest, most reliable and environmentally friendly fuels in use today, but leaks can occur. There are three key ways to recognize a natural gas leak.

Look. Blowing dirt, bubbling creeks or ponds, dry spots in moist areas or dead plants surrounded by green, live plants also may indicate a natural gas leak.

Listen. An unusual hissing sound near gas lines or appliances may indicate a natural gas leak.

Smell. In it's raw state, natural gas is colorless and odorless. Natural gas utility companies, like Clearwater Gas, add a substance called mercaptan to create the familiar, rotten-egg-like odor usually associated with natural gas. You should take action even if you detect only a faint odor of natural gas in the air.

NATURAL GAS SAFETY TIPS

Here are some key words to help you remember what to do if a natural gas leak is suspected:

Leave the area immediately. Do not try to find or stop the leak.

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 144 of 160

REPORT NO.:-GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

Don't touch. Do not smoke, use a cell phone, flashlight, turn on or off any lights or appliances or operate any kind of vehicle or equipment that could create a spark.

Dial.

If a leak is suspected near a natural gas transmission pipeline, call the number on the pipeline marker. If the smell of gas is particularly strong, or no number is available, hen immediately inform to nearest help center, because pipelines are underground, line markers are used to indicate the approximate location of the pipelines. However, these markers do not indicate how deep the pipeline is buried. The pipeline route can also take twists and turns between markers. Never assume the pipeline lies in a straight line. Always dial before dig

How to identify a leak or failure

One or more of the following signs may indicate a natural gas pipeline leak or failure:

Meeting Safety Standards and More

The design and construction of transmission in Canada are guided by strict regulations made by the National Energy Board (NEB) These standards regulate pipe wall thickness, protective pipe coatings, depth of burial, operating pressures, public safety and system integrity management. These standards are considered the highest in the world. Brunswick Pipeline prides itself on implementing safety measures that meet or exceed these federal regulations, We took many precautions in the design and construction of the Brunswick Pipeline – because no business objective is more important than the safety of

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 145 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

people living and working around the pipeline. Our pipeline includes a broad array of safety features:

- High quality steel and testing at manufacture.
- Application of fusion bond epoxy coating to protect the pipeline against corrosion.
- Cathodic protection (impressed current on the pipeline) to protect against corrosion.
- Specialized welding techniques.
- X-ray or ultrasonic testing of each weld.
- Pre-operation hydrostatic tests to verify structure integrity under extreme pressure.

Safety in Operations

In addition to the features built into the pipeline are safety practices followed in operations to protect the installed pipeline:

- 24 hr/day, 7 days/week monitoring of gas flow pressures
- Plan for rapid pressure loss on the pipeline through a series of valves along the route
- Pipeline marker signs to identify the area where the pipeline is buried .
- Public awareness program to remind people to call before they dig near the pipeline
- Regular mobile patrols to guard against unauthorized activity
- Leakage surveys
- Periodic in-line inspections using sophisticated electronic equipment will check for changes in the steel pipe wall
- Security management plan, including random patrols of cell above ground facilities and the use of other modern security protocols
- Emergency Response Plan, developed with input from local and provincial emergency responders
- Ensure first responders have the training needed to deal with pipeline emergencies
- Always follow "Dial before dig"

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 146 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

Observations during the study

- Online odourization system is not installed in any grid. Process has started for implementation of the same as conformed by them
- No portable/ online gas detector is available at any of the PRS. No gas detector used by them to detect leakages for natural gas. However they have agreed to procure immediately portable gas detectors for CGD. AGCL have gas detector for Compressor station.
- Radiography test record available for some of the welding joints of steel pipelines. However now in new projects they are following T4S norms as confirmed by AGCL
- Safety precaution taken during testing and commissioning are not available.
- •
- Radiography test record available for some of the welding joints of steel pipelines. However now in new projects they are following T4S norms as confirmed by AGCL.
- No as built pipe layout drawing is available for old network. However they have prepared layout drawing for reference as confirmed by AGCL. For new projects they are implementing PNGRB regulation (T4S) as per AGCL.
- Detail inspection report for trenching, lowering, backfilling, mechanical clearance etc. are not available for any of the STPL pipeline ranging from 2" NB to 4" NB.
- Piping simulation software for verification of gas velocity is not available.
- GIS presently not available. However AGCL has confirmed that process has started for implementation of GIS system.
- PE pipes and fittings used for underground piping system conform to ISO 4437 & ISO 8085 as per PNGRB regulation and verified from order copy and MTC provided by AGCL. For extension /new upcoming pipeline MDPE pipes are used and Electro fusion welding process has started. However for old network HDPE pipe along with butt welding process were used earlier.
- Display board indicating the PRS are not available in most of the installation.
- Contact no. during any emergency is not displayed in any PRS. However these are displayed in different grid offices.
- Vent lines are either not available or installed at lesser heights than recommended (3 meters above working level) as per PNGRB norm.
- Approach to the PRS and its housekeeping needs to be improved.

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 147 of 160

- Safety precaution taken during testing and commissioning are not available.
- Pipeline markers are available for Steel and PE pipe network at few locations. However this need to be further improved as per T4S requirements.
- Color coding has been maintained for pipe line network including GI Piping inside the premises of domestic and commercial consumers. However at few locations this needs to be improved further to meet T4S requirements.
- Safety rules and Dos & Don'ts are not displayed in most of the PRS and consumers establishments. Need to be improved further to meet T4S requirements.
- Customer owned IPRS installations & downstream piping shall be certified by third party agency and recertification has to be insured by AGCL as to complied T4S regulation. Initial Certification is available with AGCL and checked from records in few of the cases however AGCL has confirmed that they are compiling this but recertification process has to be taken up to meet the regulation.
- As per evidence provided, valves in PE and steel network are vary widely spaced having distances between successive valves are more than 1 Km and 3 Km in PE and Steel network respectively. However on road/river/rail etc. crossing valves upstream and downstream have been provided but needs to be improved further to meet T4S requirements.
- AGCL confirmed that PE network Contains Cast Iron valves at few locations which would replaced at the earliest with steel valves.
- Test certificate are not available for fasteners as per PNGRB norms they should conform to ASTM A153- for hot dip galvanizing. But AGCL confirmed that for further procurement they will compile with T4s regulation.
- Latest edition codes and standards for construction like API 1104, API 5L etc. to be procure however old edition are available.
- HSE management plan is not in force at present. However order place on organization for implementation of the same as per document provided by AGCL.
- No fire protection system available at any of the PRS.

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 148 of 160

- Following manuals/standards are not available with the entity
 - i. EPA 1986 and rules
 - ii. Weights and measure rules Act
 - iii. Operating manual including start up shut down and emergency Response and disaster management plan.
 - iv. Safety manual.

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 149 of 160

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

REFERENCES

- 1. Quantitative Risk Assessment-M.J Borysiewiez, M.A. Borysiewiez, L.Garanty, A. Kozubal
- 2. Guide to Manufacture, Storage and Import of Hazardous Chemicals Rules (MSIHC), 1989 issued by the ministry of environment and forests, (MoEF) Govt.of India as amended up to date.
- 3. World Bank Technical papers relating to "Techniques for assessing Industrial Hazards".
- 4. Major Hazard Control by ILO.
- 5. Risk Management Program guidelines by EPA (US)
- 6. World Bank Technical Paper no. 55 Technica Itd. For assessing hazards A Manual.
- 7. PHAST v 6.53-Software
- 8. Overall plot plan
- 9. MSDS for Methane, Ethane, Propane, Butane, Pentane, Hexane, Carbon dioxide, nitrogen

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 150 of 160

ASSAM GAS COMPANY LTT

QUANTITATIVE RISK ASSESSMENT

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

APPENDIX A: ASSUMPTIONS AND RULE SETS

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 151 of 160

GREEN

THE GREEN PEOPLE

QUANTITATIVE RISK ASSESSMENT

REPORT NO.:-GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

TOPIC:	Process Material Characterization	
APPLICABILITY:	Consequence Analysis	
DATA	A / RULE SET:	ASSUMPTIONS:
The flow, de	ensities, temperatures and	
pressured of the str	eams are taken directly	
from Heat & Mass I	Balances supplied for the	
Project.		
Multi-compo	onent process streams	It is assumed that the simplification of
have been simplified for release		multi-component process streams will not
consequences purposes. This is achieved by		affect the results. The most representative
modeling them as a single stream based on		stream is considered based on the stream
review of molar fraction stream		that has a potential to cause maximum
compositions and taking the most		harm, the effect is likely to be more
representative stre	am.	conservative.
LIKELY EFFECT ON		·
RESULT:		
The simplification of multi-component process streams is likely to affect the		
consequence analysis results such as dispersion, radiation and explosion. The results are		
likely to be more conservative thus exaggerating the risk slightly.		

REFERENCE:

Heat and Material Balance

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 152 of 160

ASSAM GAS COMPANY LTD (A COTT OF ASSM UNDERTINGING)

QUANTITATIVE RISK ASSESSMENT

TOPIC:	Leak Sizes		
APPLICABILITY:	Consequence Analysis		
DA1	TA / RULE SET:	ASSUMPTIONS:	
Leak sizes a	are defined in terms of	Although real holes in process	
diameters of nom	inally circular holes.	equipment are unlikely to be circular, the	
		release rate depends on the hole area and	
		is largely independent of the hole shape.	
Leak sizes o	considered for the study		
are			
0-5 r	mm leak is represented as		
5mm			
5-25	mm leak is represented		
as 25mm			
25-1	00mm leak is represented		
as 100mm			
>150	Omm is represented as		
Rupture			
LIKELY EFFECT ON			
RESULT:			
The hole sizes will affect the release rate, dispersion, jet fire, pool fire and other			
consequence analysis results			
REFERENCE:			
CMPT –	CMPT – DNV Technica		

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 153 of 160

GREEN

THE GREEN PEOPLE

QUANTITATIVE RISK ASSESSMENT

TOPIC:	OPIC: Release, Isolation and Blowdown	
APPLICABILITY:	Consequence Analysis	
DAT	A / RULE SET:	ASSUMPTIONS:
For releases, the quantities available		This approach is conservative for low
for release are tak	en as the total isolatable	pressure systems because loss of
inventory within ea	ach section of plant. This	containment events may occur at
assumes that a rel	ease occurs at the lowest	elevations above the lowest point hence
point of each sec	tion.	limiting the quantity of liquid available for
		release.
		Considering the lowest point of
		release also covers release of gas.
		Operating inventory is considered to
		be 10% below the Level Safety High (LSH)
		level of the equipment
For cases w	here isolation fails,	Isolation is assumed to be provided
adjacent section i	inventories are added to	by ESD valves of any other valves
the release. This will therefore increase the		connected to ESD system.
quantity of material released and duration		ESD operates as Safety Level 4
of release.		
Pool fires ar	re restricted by bunds and	The extent of pool spread will be
kerbs wherever ap	oplicable.	limited by factors such as bunding, kerbing,
Drainage n	nay have a positive	general layout arrangements and ground
benefit in the redu	uction of the size of	elevation and type.
running pool fires.	However, this scenario is	
not considered. Li	quid releases are assumed	
to form circular po	pols.	
Isolation is assumed to automatically		The total isolation time is assumed to
take place after confirmed fire detection		be a function of detection time, response
(by fire detectors ,	/ manual).	time and shutdown time (isolation time =
		detection time + response time + shutdown
		time).
		The isolation time is assumed to be 5

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 154 of 160

ASSAM GAS COMPANY LTD (A CONT OF ISSH UNDERTICAL) ASSAM GAS COMPANY LTD.

QUANTITATIVE RISK ASSESSMENT

GREEN GROUP THE GREEN PEOPLE

TOPIC:	Release, Isolation o	Release, Isolation and Blowdown	
APPLICABILITY:	Consequence Analysis		
DA	TA / RULE SET:	ASSUMPTIONS:	
		min, considering the time required for	
		ignition (delayed ignition time considered	
		for conservative results), response time	
		(automatic / manual whichever is greater)	
		and ESD valve shutdown time.	
		Fire detection loop is with coverage	
		criteria of 15m per detector.	
Draining is	not offered any credit in	Drain valves are assumed to be	
risk reduction		manual. Manual draining valves are	
		assumed to be impaired under fire	
		conditions.	
De-pressurization is achieved through		The blowdown system is assumed to	
blowdown system	n	depressurize the isolated inventory to lower	
		pressure or 50% of the initial system pressure	
		(whichever is less) within 15 minutes	
		(maximum), as per API 521.	
		De-pressurization is assumed to take	
		place for 15 min	
Conseque	nce time steps are	Upto 5 minutes, the release is	
considered in co	nsequence analysis	assumed to be determined by full inventory	
		at operating pressure	
		From 5 to 20 min, the release is	
		assumed to be the hold-up inventory in the	
		section released at operating pressure	
		After 20 min, the release is assumed	
		to be the remaining hold-up inventory in	
		the section released at 50% operating	
		pressure	
		Time steps continue until exhaustion	

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 155 of 160

GREEN

THE GREEN PEOPLE

QUANTITATIVE RISK ASSESSMENT

TOPIC:	Release, Isolation and Blowdown	
APPLICABILITY:	Consequence Analysis	
DATA	A / RULE SET: ASSUMPTIONS:	
		of inventory
LIKELY EFFECT ON		
RESULT:		
The above assumptions are likely to affect the release rate, dispersion, jet fire,		
pool fire and other consequence analysis results		
REFERENCE:		
CMPT – E	DNV Technica	
API 521		

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 156 of 160

QUANTITATIVE RISK ASSESSMENT

REPORT NO.:-GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

GREEN

THE GREEN PEOPLE

TOPIC:	Data Sources		
APPLICABILITY:	Frequency / Probability Analysis		
DAT	A / RULE SET:	ASSUMPTIONS:	
Part counts	are performed from		
P&IDs and plot pla	ins to determine the		
numbers of compo	onents in each isolatable		
section.			
Application	of generic failure data,		
such as TNO Purple	e Book or E&P Forum to		
the part count will	provide a schedule of		
release frequencie	es for each section for loss		
of containment re	presentative		
Material rea	activity index is used for	d for	
determining the ig	nition probability purple		
book			
LIKELY EFFECT ON		·	
RESULT:	RESULT:		
The frequency / probability analysis data sources will affect the frequency		s data sources will affect the frequency	
analysis conducted for the QRA			
REFERENCE:			
E&P Foru	E&P Forum QRA Directory by SINTEF		
Guidelin	Guidelines for Quantitative Risk Assessment, "Purple Book", CPR 18E, Committe		
for the Prevention of Disaster, 1999			

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 157 of 160

GREEN

THE GREEN PEOPLE

QUANTITATIVE RISK ASSESSMENT

TOPIC:	Vulnerability of Personnel		
APPLICABILITY:	Vulnerability Assessment	Vulnerability Assessment	
D	ATA / RULE SET:	ASSUMPTIONS:	
Flash Fire		General Industry / Regulator	
Within LFL		assumption	
indoo	r fatality probability		
1.0 ou	tdoor fatality probability		
Explosion		Use of explosion probit = 1.47 + 1.35	
20 mbar		In (P), where P is the pressure in psi	
0 indo	oor fatality probability	Indoor fatality probability based on	
0.01 c	utdoor fatality probability	CIA fatality vulnerability curve for hardened	
140 mbar		structure building	
0 indo	oor fatality probability		
0.3 OL	tdoor fatality probability		
210 mbar			
0.56 ir	ndoor fatality probability		
0.3 OL	tdoor fatality probability		
Fireball		Based on probit = -38.48 + 2.56 In	
500 tdu		[(W/m ²) ^{4/3} T] tdu where tdu is the thermal	
0 indo	oor fatality probability	dose unit in kW/m ²) ^{4/3} sec and exposure time	
0 outo	loor fatality probability	T is the fire ball duration in seconds	
1000 tdu			
0 indo	oor fatality probability		
0.02 0	utdoor fatality probability		
1800 tdu			
0.24 ir	ndoor fatality probability		
0.24 0	utdoor fatality probability		
Jet Fire		Based on probit = -38.48 + 2.56 In	
5 KW/m ²		[(W/m ²) ^{4/3} T] where exposure time T is in	
0 indc	or fatality probability	seconds and maximum exposure time is 20	
<0.01	outdoor fatality probability	sec	
12.5 KW/m ²		A fixed 20 sec exposure time is	

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 158 of 160

TOPIC:	Vulnerability of Personnel			
APPLICABILITY:	Vulnerability Assessment	nt		
DAT	A / RULE SET:	ASSUMPTIONS:		
0 indoor	fatality probability	assumed for jet fires		
<0.01 ou	tdoor fatality probability	100% fatality for any person found		
37.5 KW/m ²		inside the jet fire		
0.56 indo	oor fatality probability			
0.56 outo	door fatality probability			
Indoor vulne	erability for fireballs, pool	If out door thermal radiation (in		
fires, jet fires.		KW/m²) > 12.5 outdoor, people would		
		attempt to escape outdoors giving indoor		
		fatality probability = outdoor fatality		
		probability		
		If out door thermal radiation (in		
		KW/m²) < 12.5 outdoor, building is assumed		
		to provide complete protection (unless		
		impingement) and indoor fatality		
		probability = 0		
LIKELY EFFECT ON				
RESULT:				
The vuln	erability will affect the risks	determined for the worker groups		
REFERENCE:				
Methods	s of the determination of p	ossible damage, "Green Book", CPR 16E, TNO		
1992	·			

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 159 of 160

QUANTITATIVE RISK ASSESSMENT

GREEN

TOPIC:	Critical Steel Temp Pipeworks and Structural	eratures and Times to Failure of Vessels, Steelwork.	
APPLICABILITY:	Vulnerability Assessment		
DAT	A / RULE SET:	ASSUMPTIONS:	
When a stee	el vessel, pipe or structure	Time to unprotected process	
is exposed to fire a	nd/or thermal radiation,	equipment failure is based upon 5 min jet	
the steel temperat	ures increases. The	fire impingement	
mechanical prope	erties of the steel are	Pipe rack supports, equipment	
highly dependent	on temperature and it is	supports are assumed to be passive fire	
necessary to prevent steel from reaching a		protected for at least 15 min	
critical temperature to prevent failure. This		Buildings in the process area are	
depends on the stresses to which it is		assumed to be protected against 30 min	
subjected and to a	a certain degree of steel	against direct flame impingement	
type. The critical st	eel temperature will		
normally be in the	range 400-550 deg. C.		
However in some s	ituations where the steel		
is subject to high le	evels of stress the critical		
steel temperature	may be lower than this		
range. In other situ	ations, lower levels of		
stress may lead to	higher critical steel		
temperatures.			
LIKELY EFFECT ON		I	
RESULT:			
The vuln	The vulnerability will affect the escalation risks		
REFERENCE:			

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 160 of 160

QUANTITATIVE RISK ASSESSMENT

REPORT NO .:- GCCIPL/V/AGCL/QRA/2010-11/OCT/RMS-096/R01

LEGAL DISCLAIMER & LIABILITY

The consulting services conducted by Green Circle Consultants (I) Pvt Ltd (the "Company") were performed using generally accepted guidelines, standards, and/or practices, which the Company considers reliable. Although the Company performed its consulting services pursuant to reliable and generally accepted practices in the industry, the Company does not guarantee or provide any representations or warranties with respect to Client's use, interpretation or application of the findings, conclusions, and/or suggestions of the consulting services provided by the Company. Moreover, the findings, conclusions, and the suggestions resulting from the consulting service are based upon certain assumptions, information, documents, and procedures provided by the Customer. AS SUCH, IN NO EVENT AND UNDER NO CIRCUMSTANCE SHALL THE COMPANY BE LIABLE FOR SPECIAL, INDIRECT, PUNITIVE OR CONSEQUENTIAL DAMGES OF ANY NATURE WHATSOEVER, INCLUDING WITHOUT LIMITATION, ANY LOST REVENUE OR PROFITS OF THE CUSTOMER OR ITS CUSTOMERS, AGENTS AND DISTRIBUTORS, RESULTING FROM, ARISING OUT OF OR IN CONNECTION WITH, THE SERVICES PROVIDED BY THE COMPANY. The Customer agrees that the Company shall have no liability for damages, which may result from Client's use, interpretation or application of the consulting services provided by the Company.

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	

HAZOP STUDY REPORT

REPORT NO .:- GCCIPL/V/AGCL/HAZOP/2010-11/SEP/RMS-075/R01

IMPORTANT

- THIS DOCUMENT IS FOR LIMITED USE / CIRCULATION ONLY.
- NO PART OF THIS DOCUMENT IS TO BE REMOVED AND /OR TRANSFERRED OUT IN ANY MANNER WHATSOEVER WITHOUT THE PERMISSION OF AGCL MANAGEMENT.
- HOLDER OF THIS DOCUMENT IS TO ENUSRE THE SAFEKEEPING OF IT. NOTHING IS TO BE WRITTEN OR UNDERLINED IN ANY PAGES OF THIS DOCUMENT. ANY REVISION REQUIRED SHOULD BE BROUGHT TO THE NOTICE OF DESIGNATED OFFICER OF AGCL.
- ON CHANGE OF DUTY OR TRANSFER OR OTHERWISE, THIS DOCUMENT IS TO BE HANDED OVER TO THE NEXT PERSON TAKING UP THE CHARGE OF THE HOLDER.
- REVISIONS WHEN MADE MUST BE ENCLOSED IN THE DOCUMENT IMMEDTIALTY REPLACING THE OBSOLETE ONES.

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 1 of 1

ASSAM GAS COMPANY LTD (A CONT OF ASSAN UNDERTICAL) ASSAM GAS COMPANY LTD

HAZOP STUDY REPORT

REPORT NO .:- GCCIPL/V/AGCL/HAZOP/2010-11/SEP/RMS-075/R01

AMENDMENT SHEET (To Issue 01)

SI. No.	Section No.	Page No.	Amendment Particulars	Effective Date	Signature (Amendment incorporated)

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	

HAZOP STUDY REPORT

REPORT NO .:- GCCIPL/V/AGCL/HAZOP/2010-11/SEP/RMS-075/R01

This Document is

Approved By	B. Borpatragohain, Managing Director
Signature	
Controlled By	S. Tamuli, Sr. Manager – TS
Signature	

Approved By:	Doc. No.: AGCL/QRA/04	Issue No.: 01
Controlled By:	Rev No.: 00	Page 1 of 1